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RESEARCH:

When wind-generated waves propagate from
the deep ocean onto the continental shelf, they
begin to feel the effects of the bottom. These
bottom effects are accounted for as bottom
friction, which arises due to the no-slip flow
condition on the bottom. This condition gives
rise to a bottom shear stress and a thin boundary
layer where significant energy dissipation can
take place.

SUMMARY:

Laboratory experiments are outlined in this
report along with a brief description of the
methods involved in the model derivation.

The model is formulated in two stages:

@ Deriving predictive relations for the ripple
geometry for a given bottom sediment and
a given wave condition.

@ Developing a relationship between flow,
the ripple geometry, and the resulting fric-
tion factor.

The relation between the ripple geometry and
the roughness and the relationship between the
friction factor and the wave, sediment, and fluid
parameters are analyzed. Finally, simple rela-
tionships for the prediction of the roughness of a
movable bed under regular and irregular waves
are proposed, and numerical examples illustrat-
ing use of the relationships are given.
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PREFACE

The study reported herein presents results of research performed
at Massachusetts Institute of Technology (MIT), Cambridge, MA, under
contract with the Dredging Research Program (DRP) of Headquarters,
U.S. Army Corps of Engineers (HQUSACE). The contract was administered
under the Calculation of Boundary Layer Properties (Noncohesive
Sediments) Work Unit 32463, which is part of DRP Technical Area 1
(TAl), "Analysis cf Dreiged Material Placed in Open Water."

Messrs. Robert Campbell and John H. Lockhart, Jr., were DRP Chief and
TAl Technical Monitor from HQUSACE, respectively. Mr. E. Clark
McNair, Jr., U.S. Army Engineer Waterways Experiment Station (WES)
Coastal Engineering Research Center (CERC), was DRP Program Manager
(PM), and

Dr. Lyndell Z. Hales, CERC, was Assistant PM. Dr. Nicholas C. Kraus,
Senior Scientist, CERC, was Technical Manager for DRP TAl and Princi-
pal Investigator for Work Unit 32463 during the investigation.

Dr. Kraus was succeeded as Technical Manager of TAl by Dr. Billy H.
Johnson, WES Hydraulics Laboratory, and as Principal Investigator for
Work Unit 32463 by Dr. Norman W. Scheffner, CERC Coastal Oceanography
Branch.

This report was prepared and the associated research performed by
Palitha Nalin Wikramanayake and Ole Secher Madsen, both of the Ralph
M. Parsons Laboratory, MIT. The final report was delivered to the
CERC on 1 September 1990.

At the time of publication of this report, Director of WES was
Dr. Robert W. Whalin. Commander was COL Bruce K. Howard, EN..

SUMMARY

When wind-generated waves propagate from the deep ocean onto the
continental shelf they begin to feel the effects of the bottom. These
bottom effects are accounted for as bottom friction which arises due
to the no-slip flow condition on the bottom. This condition gives rise
to a bottom shear stress and a thin boundary layer where significant
energy dissipation can take place.

The goal of this study was to develop a simple, physically
realistic method to predict the friction factor over a movable sand
bed under field conditions. Since reliable field measurements are
available only for ripple geometry, laboratory data are used to derive
the friction factor. Laboratory experiment& are outlined in this
report along with a brief description of the methods involved in the
model derivation.

The model is formulated in two stages. The first involves deriv-
ing predictive relations for the ripple geometry for a given bottom
sediment and a given wave condition. The second is the development of
a relationship between flow, the ripple geometry, and the resulting
friction factor. The relation between the ripple geometry and the
roughness and the relationship between the friction factor and the
wave, sediment, and fluid parameters is analyzed. Finally, simple
relationships for the prediction of the roughness of a movable bed
under reqular and irregular waves are proposed and numerical examples
illustrating use of the relationships are given.

The contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constitute an
official endorsement or approval of the use of such commercial products.
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PART I: INTRODUCTION

1. When vind generated vaves propagate from the deep ocean onto the
continental shelf they will begin to feel the effects of the bottom. The
chief effects are shoaling, refraction, and bottom friction. The first two
are commonly accounted for by assuming that there is inviscid flow all the
vay to the ocean bottom. Bottom friction, however, arises due to the no-
slip condition at the bottom. This condition gives rise to a bottom shear
stress and a thin boundary layer vhere significant energy dissipation can
take place.

2. This <aergy dissipation results in a decrease in the wave height.
Therefore in order to predict the wave height in coastal areas it is
necessary to quatify the bottom shear Stress. Another typical feature of
coastal regiors is the presence of steady currents induced by winds or
tides. As discussed in the previous report (Madsen and Wikramanayake,
1990) the vave boundary layer causes the currents to experience an
increased bottom resistance. Furthermore the wave motion at the bottom is
usually strong enough to mobilize the bottom sediments, which in
conjunction with a steady current can cause significant sediment transport.

3. It is obvious then that quantification of all these processes must
be based on a good estimate of the bottom shear stress caused by the wave
motion. Following the work of Kajiura (1964) and Jonsson (1966) this is
done by relating the shear stress to the near-bottom vave velocity using a
friction factor similar to that used in steady boundary layer flows. This
friction factor can be calculated once the near-bottom Reynolds number and
the relative roughness of the bottom are known. When the flow is fully
rough turbulent, which is usually the case in most field scale flows, the
friction factor is dependent only on the relative roughness of the bottom.

4. The relative roughness of the bottom is the ratio of the length
scale of the wave orbital motion at the bottom to the length scale of the
bottom roughness. A fundamental assumption of this approach is, in common
with vhat is done for steady turbulent boundary layers, that the gecmetry
of the bottom can be represented by a single length scale. While this is
obviously an oversimplification for complex bottom geometry, it will be
seen that the scatter in the experimental data is such that a more detailed




model of the bottom roughness cannot be justified.

6. Therefore when the bed geometry is known in advance, as in the
case of a gravel bottom, a bottom roughness length can be estimated and the
vave shear stress for a given wave motion can be calculated. In most
coastal regions the bottom consists of cohesionless sediment--usually
quartz sand--with diameters of the order of 0.2 mm. For a flat sediment
bed the roughness could be expected to be comparable to the grain diameter.

6. However, vave attenuation measurements in the field, for example
Ivagaki and Kakinuma (1963) and (1967), Treloar and Abernathy (1978), have
resulted in values of the friction factor that are an order of magnitude
higher than those that could be expected from a flat sediment bed. This is
due to the presence of ripples and other bedforms on the bottom resulting
in significantly greater resistance to the wave motion than from a plane
bed.

7. The development of bed forms on beds of cohesionless sediment
under the action of regular vaves has been studied in detail under
laboratory conditions. When an initially plane sediment bed is subjected
to an increasing wave motion a point will be reached wvhen the motion is
just sufficient to move a few grains to and fro. This is referred to as
initiation of motion. Further increase of the wave motion results in the
formation of regular two-dimensional ripples with vell-defined heights,
lengths, and steepness. As the wave bottom orbital amplitude, vhich is the
length scale of the wave motion, increases the ripple height and length
increase while the steepness remains approximately constant.

8. Increase in the wave motion beyond a certain critical condition
results in a decrease of the ripple steepness. Under these conditions the
ripples are no longer regular and start to exhibit three-dimensional
features. The ripple crests are more rounded than in the two-dimensional
stage. This is due to ripples being overcome by the stronger wave motion.
Still stronger wave motion results in the disappearance of the ripples.

The bed is once again plane. However, under these conditions there is a
mobile layer of sediment on the bed that follows the wave motion. This
condition is known as sheet flow. At all stages of this process the exact
geometry is found to depend on properties of the vave motion, the fluid and
the sediments.




9. When bedforms are present it can be expected that the bottom
roughness is scaled by their geometry and not by the grain diameter. Under
sheetflow conditions there will be an increased friction due to the moving
grains leading to an equivalent roughness scaled by the grain motion.
Therefore it is seen that the roughness of a bed of cohesionless sediment
is not a constant but is dependent on the vave, fluid, and sediment
parameters.

10. Another important factor that mmst be comsidered when applying
these ideas to field situations is that waves in the field are most often
not regular and monochromatic. Instead, the coastal wave environment
consists of a range of wave frequencies and amplitudes from many
directions. Laboratory and field data suggest that bedforms under
irregular vaves can be significantly different from those obtained using
regular waves. Still further complications arise when a steady current is
present along with the waves. Current motions comparable to the wave
motion can alter the geometry of the ripples and thus change their
resistance to the wave motion.

11. 1In this report therefore an attempt is made to formulate a simple,
physically realistic method to predict the equivalent roughness of a mobile
bed under regular and irregular wave motion. The most recent laboratory
and field data available on wave-formed ripple geometry and energy
dissipation will be used. Extensions to cases for which no data are
available will be suggested.

12. 1In Part II the concepts of bed roughness and the wave friction
factor will be discussed. The derivation of the friction factor from
experimental measurements will be outlined along with a brief description
of the methods involved. The interaction between waves and a bed of
cohesionless sediment will be reviewed in Part III. This will include the
initiation of motion, ripple geometry and disappearance of ripples. The
similarities and differences betveen results using regular and irregular
laboratory vaves and results from the field will be explored.

13. The available measurements of energy dissipation under wave motion
vill be utilized in Part IV to derive the equivalent bottom roughness due
to bedforms. The relation between the ripple geometry and the equivalent
roughness and the relationship between the friction factor and the wave,
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sediment, and fluid parameters will be analyzed. Simple relationships for
prediction of the roughness of a moveable bed under regular and irregular
vaves will be proposed.

14. Some numerical examples that illustrate the use the relationships
proposed in Part IV will be given in Part V. A summary of the analysis and
results of this report will be given in Part VI along with recommendations
for future research.

10




PART II: THE WAVE FRICTION FACTOR AND
THE EQUIVALENT BOTTOM ROUGHNESS

Vav on Fact

16. The bed shear stress caused by steady flow over a horizontal bed
" has been studied for many years. Jonsson (1966), (1980a) and Jonsson and
Carlsen (1976) applied the ideas developed for this case to the case of
purely oscillatory flow over a flat bed by defining

Tow = §Ptwitka o)

where
Tom * Maximum bed shear stress due to the wvave motion
p = Density of the fluid
fy = Wave friction factor
ups = Maximm near-bottom velocity due to the wave motion.

16. Carrying the analogy further Jomsson used available experimental
and theoretical knowledge to develop a friction factor diagram analogous to
the Moody diagram used for steady pipe flow. In this diagram the flow is
classified as belonging to the laminar, smooth turbulent, or rough
turbulent regimes.

17. The friction factor for the -laminar region is obtained by solving
the linearized equations of motion for the vave boundary layer and is given

by

f' = 2 (2)
JRe
vhere
Re = Ubadb 5 ¢ne flow Reynolds mumber

¢ = Radian frequency of the oscillatory motion

Ay = 9-3! is the bottom excursion amplitude

v = kinematic viscosity of the fluid

11




18. In the smooth turbulent regime the flow is turbulent but still not
affected by the properties of the bed. The friction factor depends only on
the Reynolds number but the governing equntions' can no longer be solved
exactly. For a given bed at high enough Reynolds numbers and large enough
roughness scale the geometry of the bottom will affect the flow and after a
transition region the flow will become rough turbulent. In rough turbulent
flow--vhich is practically alvays the regime seen in the field--the
friction factor is dependent only on the relative roughness of the v om.

19. The friction factor for the laminar and smooth turbulent regions
is plotted in Figure 1 against the flow Reynolds number. For the purposes
of this study the transition region will be ignored and the friction factor
for a given bed will be taken as the greater of the value from Figure 1 or
the value for fully rough turbulent flow, from equation (7), presented
graphically in Figure 2.

Bed Roughness

20. In rough turbulent flow the roughness elements of the bed are not
shielded by the viscous sub-layer and experience the full effect of the
external flow. 0On a microscopic scale the bed shear stress is caused by
the form drag and skin friction acting on individual roughness elements.

21. However at distances from the bed that are large compared to ky,
the physical size of the roughness elements, the effect of each element
cannot be resolved. What is seen is a turbulent motion caused by many
elements. At this distance therefore it is possible to define an average
bottom shear stress. In steady flows it has been observed, Schlicliting
(1968), that in this region the flow velocity u can be represented by

u=dxqp 2 (3)
vhere

u, = 7/p is the shear velocity
x = Von Karman’s constant (x = 0.4)
Z9 = a measure of the boundary roughness.

12
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22. In steady rough turbulent flow the degree of roughness of a
surface is quantified by its equivalent Nikuradse sand grain roughness ky.
This is defined as the diameter of uniform sand grains that, vhen closely
packed together, produce the same boundary resistance as the surface under
consideration. From measurements of velocity profiles in the region where
(3) holds it has been found that

Zo = ;3 4)

23. This definition of the bottom roughness can be extended to any
geometry that has sufficient regularity to allow the definition of the
average shear stress. The exact value of this representative roughness
mst either be established by experiment or by extrapolation from results
for similar geometries.

24. The relative roughness of a surface is then defined as the ratio
of k, and a length scale of the external flow. In steady flows this could
be the flow depth or the lateral dimension of a closed conduit. In
oscillatory flows the turbulence is confined to a thin boundary layer and
the appropriate length scale is the excursion amplitude Aj.

25. Measurements of velocity profiles in oscillatory boundary layers,
for example Jonsson and Carlsen (1976) and Jensen (1989), indicate that the
velocity is logarithmic close to the bed for most parts of the wave cycle.
This has lead to attempts to use the observed profiles along with equations
(3) and (4) to calculate the shear velocity and the equivalent roughness as
is done for steady flows.

26. Furthermore the use of zy as the height above the bed where the
velocity vanishes is a widely used boundary condition in theoretical
models. It should be pointed out that this is a purely conceptual
extrapolation as equation (3) does not hold very mear the bed. However,
this method has been used quite successfully to relate the bottom roughness
and the velocity profile in steady flows. It also has the advantage that
it is a simple formulation. For these reasons the roughness concepts
developed for steady turbulent flows have been used virtually unchanged in
the analysis of oscillatory boundary layers.
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Friction Factor Equatjons

27. Jonsson (1966) and Jonsson and Carlsen (1976) used a simplified
approach to obtain a theoretical relationship between the friction factor
and the relative roughness. The undetermined coefficient in this equation
vas found using tvo sets of velocity profile measurements in a wave
boundary layer. The resulting implicit expression for f, vas

+ 1og,o[w;_] - 1og,o[-§3-] - 0.08 (5)

Svart (1977) proposed an approximation to equation (5) that was explicit in
1y as

fw = exp(65.213(Ay/kp) 0-19¢4 - §.977]) (6)

28. Grant and Madsen (1979) used a linear eddy viscosity model to
deriva the equation

2, = 0.08 oD

ker32y/{, + keid2y/(,

vhere ker and kei are the Kelvin functions of zeroth order,

. kp/30
Co Ty [

(8
and u,, is the shear velocity based on the maximum bottom shear stess u,, =
VToa/p = JIw/2upa. In passing, it should be noted that equation (7) is, for
all practical purposes, identical to the theoretical friction factor
relationship derived by Madsen and Wikramanayake (1990).

29. The three equations (5), (6), and (7) are plotted in Figure 2 as
graphs of friction factor against the relative roughness. It can be seen
that all three curves lie quite close to each other showing that the
theoretical and semi-empirical approaches lead to similar results.

30. It should be kept in mind that equations (5) and (7) are derived
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assuming that the physical scale of the bed roughness ky is much smaller
than the boundary layer thickness. This condition is satisfied when Ap/ky
is large. Therefore the use of these equations at low values of Ap/k;
should be vieved as an extrapolation and not as a theoretical prediction.

31. In fact both Jonsson (1966) and Grant and Madsen (1982) propose
that £, be considered a constant vhen Ap/kp is less than unity. This vas
based in part on the fact that the largest friction factor measured by
Bagnold (1946) was 0.24. However since measurements on rippled sand beds
give values as high as 0.5 ve will not consider an upper limit for f, in
this study.

32. Howvever, the problem of quantifying the equivalent roughness kj
for a particular bed remains unresolved. Two differemnt friction factor
relations, for example equations (5) and (6) above, could fit the same data
equally well if the definition of k, is adjusted. Riedel et al. (1972)
published an extensive set of friction factor data for surfaces roughened
vith closely packed uniform sand grains. Grant (1976) found that equation
(6) fit the data well if the bed roughness vas set equal to the grain
diameter.

Wave Friction and Energy Dissipation

33. The average energy dissipation per unit area in the wvave boundary
layer, E4, was derived by Kajiura (1968) as

Eq = -Tp(t)up(t) 9
vhere 7p(t) and up(t) are the instantaneous bed szhear stress and near-bottom
vave velocity, respectively, and the overbar denotes time averaging.
Equation (9) can be evaluated only if the time variation of the bed shear

stress is known.

34. Jonsson and Carlsen (1976) present data for a fixed, roughened bed
indicating that the time variation of 7p is of the form

Tb(t) = 7pm|cos(wt+y)]|cos(st+y) (10)
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vhen the bottom velocity is of the form upgcos(st). ¢ is the phase lead of
the shear stress with respect to the near-bottom velocity. For laminar
flow p vill be 45 degrees while for turbulent flow it is expected to be
somevhat less.

36. Lofquist (1986) has measured the instantaneous shear stress and
the average energy dissipation over a rippled sand bed. His results show
that the time variation of the shear stress can be very different from
equation (10). The energy dissipation E3 can be related to the near-bottom
velocity upy by an energy dissipation factor fy defined by

Bq = 3-';'—,;:.113. (11)

36. It should be noted that a similar result with f, replacing f, can
be obtained if the time variation in equation (10) and the definition of
equation (1) are substituted into the right hand side of equation (9) with
the phase lead p taken to be zero. If a value of 20 degrees is assumed for
the phase lead, which is the average value from the measurements of
Lofquist (1986), it would lead to fy being greater than f, by about 6X.

37. Both fy as defined from the maximum shear stress in equation (1)
and f, can be calculated from the data presented in Lofquist (1986). They
are plotted against each other in Figure 3. It can be seen that except for
a few points vhere fy, is mich greater than f, the two values are nearly
equal with f, being greater than fy by about 6%. However this is a small
difference vhen compared to the uncertainity in the measured values.

38. The fact that f, is slightly greater than f, indicates that the
variation in equation (10) is not a good representation of the
instantaneous shear stress. If the eddy viscosity model of Madsen et al.
(1988) is used a sinusoidal variation of the bed shear stress would be
obtained. If the emergy dissipation is calculated from equation (9) with
this variation along with a phase lead of 20 degrees f, as defined by
equation (11) is found to be greater than fy by about 10%. This is an
improvement over the result obtained using equation (10) and suggests that
the sinusoidal shear stress variation is better than the variation
- suggested by equation (10).

39. Lofquist’'s experiments are described in greater detail in Appendix
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Figure 3. Comparison of the values of f, and fy derived from the
measurements of Lofquist (1986)
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A. On closer examination of the conditions it is seen that fy is much
greater than f, when the ripple length is longest and therefore the number
of ripples in the test section is the least. Under these conditions the
effect of the end conditions can be expected to have the greatest effect.
Therefore it seems reasonable to disregard these points and to comnsider
that f, as defined by equation (1) and f, as defined by equation (11) are
identical for rippled sand beds.

Experimental Determination of the Friction Factor

40. The friction factor has been determined from laboratory and field
measurements by three main methods, one direct and tvo indirect. The
direct method is to measure the bed shear stress due to the vave motion
using a device such as a shear plate. Then the friction factor can be
calculated directly from equation (1). This is the method used by Riedel
et al. (1972) for fixed beds roughened by sand grains. However, this
method would not be suitable for movable sand beds.

41. One of the indirect methods is through measurements of the
velocity profile in the wave boundary layer. This is the method used by
Jonsson and Carlsen (1976) for a fixed bed. They obtained the shear stress
in tvo vays. One was by numerical integration of the equation of motion
using the velocity measurements at various phases, while the other was
through the use of equation (3) applied to the near-bed portion of the
velocity profile.

42. Both these methods have the disadvantage that the velocity profile
at various phases of the external flov must be measured. This is likely to
be a difficult task on rippled sand beds. Furthermore even if this is done
the first method requires the calculation of the rate of change of velocity
with time at all levels. The accurate calculation of these gradients is a
difficult task. The second method involves fixing a theoretical bed level
in order to obtain a logarithmic velocity profile and also the question of
how far this region is assumed to extend.

43. The other indirect method of obtaining the friction factor is
through measurements of the energy dissipation caused by the vave boundary
layer. This has been done by measuring the wave attenuation in a wave
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flume and by measuring the energy imput needed to maintain the vave motion
in a vave tunnel or an oscillating bed. This seems the only practicable
method for movable sand beds.

44. Once the energy dissipation is calculated it is, however,
necessary to assume a relation between this value and the shear stress.
Jonsson (1966) has argued that this is not possible because of the need to
know the time variation of the shear stress and the phase lead with respect
to the external motion. However, as discussed in the previous section, the
data of Lofquist (1986) show that for rippled sand beds under a wide range
of vave conditions the friction factor can be taken equal to f, as defined
in equation (11).

45. Therefore in this report we will consider only those data sets
vhere the energy dissipation has been measured. This allows f, to be
determined unambiguously. The predictive relations proposed in later
sections will be correct for f, and therefore appropriate for applications,
such as predicting vave height attemuation, where the energy dissipation is
needed. Their use in applications which require the bottom shear stress
depend on the assumptions made above. In the remainder of the report f
and f, wvill be used interchangeably and considered to represent the same
value

The Roughness of a Movable Bed

46. In the discussion folloving equation (3) it was stated that for
fixed sand roughened beds the bed roughness was found to be of the order of
the grain diameter. In Figure 4 calculated values of the friction factor
from the data of Carstens et al. (1969) are plotted against the ratio Ap/d.
Also shown in the figure are two theoretical curves. One is equation (7)
vith k, = d as suggested by Grant (1976) while the other is equation (6)
vith k; = 2.5d as suggested by Nielsen (1983). :

47." The data points obtained from a rippled bed are for stable ripples
vith a grain diameter of 0.297 mm. The points obtained from a flat bed are
under conditions for which the flat bed is unstable indicating that there
mst have been considerable sediment motion on the bottom. It can be seen
that the friction factors obtained from the rippled bed are an order of
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Figure 4. Measured friction factors for rippled beds and unstable flat beds
along with the friction factor relations proposed by Grant and
Madsen (1979) and Nielsen (1983) for flat sand beds
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magnitude higher than the values that would be predicted from the
theoretical equations assuming a flat bed. The points obtained with an
unstable flat bed also plot well above the theoretical curves.

48. This discrepéncy shous very clearly that the grain diameter is not
the appropriate roughness scale both when the bed is rippled and when there
is significant sediment motion on the bottom. Therefore, if the use of
friction factor relations such as equations (6) and (7) is to be extended
to movable beds it is necessary to propose new roughness scales for use in
conditions where the flat sand bed is not stable.

49. These scales can be found by relating the observed roughness to
the ripple geometry and the wave and sediment parameters. It should be
emphasized here that it is the energy dissipation that is measured in the
experiments. The roughness must then be calculated from one of the
friction factor equations given above. Therefore in order to be consistent
it is important that the same equatiou bLe used when predicting the friction
factor after having predicted the roughness.

50. This means that as far as predicting the friction factor from the
analysis of the energy dissipation measurements iz concerned it does not
matter which equation is used gprovided the method is consistent. In this
report we will use equation (7) which was suggested by Grant and Madsen
(1979) without any modification for low values of Ap/ky.

61. Using this equation a value of Ap/k, can be found for every
measured value of the friction factor. Since Ap is known from the
experimental conditions this means that the equivalent roughness as defined
in this chapter is known. It is hoped that an analysis of these values
vill lead to relations that can predict the equivalent roughness given the
ripple geometry and other parameters.

52. The method outlined above still requires the prediction of the
ripple geometry as this is also dependent upon the wave and sediment
parameters. It would appear that it is much simpler to predict the
friction factor directly from the wave and sediment parameters without
considering the ripples at all. A formula of this type has been proposed
by Vongvisessomjai (1987, 1988) and Madsen et al. (1990).

53. However, this kind of direct formula is based solely on data from
laboratory experiments. It will be shown in Part III that the ripple
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geometry seen in the field under irregular vaves is quite different from
those seen under regular vaves in the laboratory. Therefore it is
necessary to investigate the connection between ripple geometry and the
friction factor in order to propose a predictive relation that can be used
under field conditions. This will be done in Part IV.
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PART III: FLUID - SEDIMENT INTERACTION

64. The effect of an applied vave motion on a movable bed composed of
cohesionless sand grains is examined in this section. Experimental data on
the initiation of motion, geometry of ripples, and the tramsition to sheet
flow will be analyzed in order to propose predictive relations that
describe these phenomena.

66. Since there has already been a considerable amount of work done
regarding the effect of regular wvaves on sand beds, for example by
Stefanick (1979) and Nielsen (1979), this aspect will not be investigated
in detail. Instead the objective of this chapter will be to see how well
existing ideas for regular vaves can be applied to data from laboratory
experiments with irregular vaves and from field measurements.

Quantification of the Problem and Non-dimensional Variables

56. The physical problem considered is the response of a bed of
cohesionless grains forced by the oscillatory motion of the fluid above it.
This study is restricted to the behaviour of sand grains in water. It is
assumed that the sand grains are specified by one linear dimension such as
their mean diameter, d, and by the density of the grain material p;. The
relevant parameters for the vater are its density p and its kinematic
viscosity v. Since the problem involves the suspemsion of the sand grains
the acceleration due to gravity must also be considered.

67. The oscillatory motion is assumed to be fully specified by its
bottom orbital amplitude Ap and its radian frequency ¢. This assumption
implies that this is entirely a bottom phenomena with no effect of the flow
depth. While this is the case in the field, where the bottom boundary
layer is only a small fraction of the depth, it will be seen that it is not
alvays true for laboratory experiments.

B8, It is expected that any aspect of the imteraction can be described
by the seven parameters Ap, ¢, p, v, d, ps, and g. Since these parameters
have three dimensions it follows that any feature expressed in non-
dimensional form is a function of four independent non-dimensional
parameters. Many different parameters have been proposed by various
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authors. Some of these have physical significance, e.g., expressing the
ratio of two forces on the grains, vhile others are used on the empirical
grounds that they improve the correlation of the data.

69. An obvious non-dimensional parameter is the specific weight of the
sand, s, defined as

s = 5! (12)

For quartz sand this value is close to 2.66.

60. Most of the laboratory experiments have been conducted at room
temperature vhich means that the viscosity was not varied over a large
range. A convenient non-dimensional parameter that includes the viscosity
is S, introduced by Madsen and Grant (1976) and defined by

S, = dﬂgﬂﬁ (13)

vhich has the advantage that it includes only fluid and sediment
parameters. Other parameters that include the viscosity have been
suggested, e.g., the friction Reynolds number Re, which is defined by

Re, = 14 (14)

or the flov Reynolds number Re defined by equation (2). The parameter Re,
determines whether the flow over a flat sand bed is smooth or rough
turbulent.

61. The effect of varying the viscosity on the ripple geometry has not
been investigated in detail. Mogridge and Kamphuis (1972) conducted
experiments at 6°C and 22°C and concluded that there was no significanmt
difference in the ripple geometry over this range of temperatures.

Hovwever, Stefanick (1979) and Grant and Madsen (1982) found S, to be a
useful parametei in describing ripple geometry.

62. The oscillatory boundary layer over rippled beds has been observed
to be fully rough turbulent. Thus it may be argued that viscosity is not
an important factor in this problem. However, the problem also involves
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the motion of sand grains through the water, an aspact that is affected by
viscosity. Therefore S, will be considered in the analysis of ripple
geometry. For the problem of water at room temperature over a sand bed S,
vill depend only on the grain diameter.

63. The remaining non-dimensional parameters will involve the wave
motion. (ne that is often used is the Shields parameter §, defined by

’

v = (15)
vhere fy’ is the friction factor for a flat sand bed. As mentioned in Part
II this is taken as the greater of the value obtained for laminar or smooth
turbulent flow from Figure 1 or the value obtained for rough turbulent flow
from equation (7) with k, = d. This parameter is proportional to the ratio
betveen the surface shear stress on a flat bed, which tends to mobilise the
sediment, and the submerged weight of the grains, which tends to oppose
grain motion.

64. A second parameter that involves the wave motion is the
acceleration parameter A, which is defined as

A* = I:J;';;E (16)

This is the ratio of the inertial force on the grain due to the fluid
motion to the downward force due to gravity. It should be noted that while
8 has been defined as a separate parameter it is also used in the
definitions of S,, ¥, and A,. This is done in order to give these three
parameters some physical meaning.

66. The most commonly measured characteristics of ripples are the
ripple length, A, and  the height of the ripple measured from crest to
trough. These values are usually made non-dimensional by dividing by the
gfain diameter, d, or the orbital amplitude Ap. Another important non-
dimensional ripple parameter is the ripple steepness 5/].
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Representation of Irregular Waves

66. In the previous section it was assumed that the near-bottom
orbital amplitude and the radian frequency vere sufficient to specify the
vave motion. These parameters are uniquely determined in the case of
regular vaves. Hovever, vaves in the field, even when they are in the same
direction, are practically alvays irregular with a range of heights and
periods. '

67. Therefore in order to apply the ideas and results obtained from
the analysis of ripples caused by regular vaves to the field it is
necessary to specify the field wave condition in terms of an equivalent
vave height and period. The expectation is that it would be possible to
find an equivalent representation that would lead ‘to the same relations
being applicable for the ripples caused by both regular. and irregular
vaves.

68. Irregular vaves are usually observed by obtaining a continuous
record of the displacement of the water surface. (ne way of specifying an
equivalent wvave from this record is to take the root-mean-square vave
height, Hrys, and the average wave period. However, it is known that for
many vave processes, such as breaking, it is the higher waves that are the
most significant. This has led to the significant wave height and period
being used to specify irregular waves. These are defined as the average
height and period of the highest one third of all the waves in the record.
If the vave heights are Rayleigh distributed it can be shown that the
significant vave height is equal to y2Hys. The significant vave period is
usually nearly equal to the average wave period.

69. A more complete way of representing random waves is through the
vave spectrum. The spectrum gives the distribution of wave energy with the
frequency. The energy, E, contained in the range ¢n + A¢/2 is given by

En = pgSy(wn)dv un

vhere S,(¢) is the surface amplitude spectrum.

70. Madsen et al. (1988) using a simple eddy viscosity model and the
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linearized bottom boundary layer equations obtained the spectral energy
dissipation using a friction factor obtained from an equivalent
monochromatic vave. This vave vas defined to have the same root-mean-
square bottom orbital velocity and amplitude as the specified wave
spectrum.

71. The equivalent bottom velocity up, vas defined by

udr = 2 I Sub(¥) dv (18)

vhere S,p is the spectrum of the near-bottom orbital velocity and is given
by

Su(®) = [5yi5eg] 'S (@ (19)

72. The equivalent bottom orbital amplitude, Apr, vas defined as

AR, = 2 I Sy @) 4y (20)

and the equivalent radian frequency ¢r can be found from

Ur = lﬂf (21)

73. It should be noted that in the above method the spectrum of the
bottom velocity is used to calculate the equivalent quantities. If an
equivalent surface vave representation, such as Hrag, is given, only the
vave number of this equivalent wave would be used to transfer the surface
quantities to the bottom. Thus it can be expe'cted that the method of
Madsen et al. (1988) will provide a more realistic representation when the
spectrum is broad for intermediate waves.

74. Sato (1988) conducted experiments on ripple gemeration by
irregular vaves in a vave tunnel. He developed his wave signal by
generating a surface displacement record based on an empirical spectrum and
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transformed it into a bottom velocity record using linear theory. This
signal vas then fed to the vave tunnel piston. He then obtained a
“significant” bottom velocity and period by considering the highest one
third of the bottom velocity fluctuations. These values vere used as
representative of the irregular motion.

75. Since ripple formation is a bottom process it would appear that
both these methods, vhich are based on the bottom velocity rather than the
surface displacement, are superior to the use of the significant height and
period. The disadvantage of these methods is that they require either the
vave spectrum or a detailed record of the surface fluctuation. This type
of information is rarely reported. In particular, all the existing field
measurements of vave-formed ripples provide only an equivalent surface wvave
to describe the wvave conditions.

76. This equivalent surface vave is either the significant vave
height, H,,4, or the root-mean-square wave height H;ys. Measurements given
in one form can be converted to the other by assuming that the vave heights
are Rayleigh distributed, a condition that is approximately satisfied in
the field (Goda, 1985). H,,, is a traditional parameter used in
applications such as wave forecasting. It was also suggested that using
H,,4 would result in a closer correspondence between ripples observed in the
field and in the laboratory. However, Nielsen (1979, 1981) concluded that
the results were not comparable even vhen H,,, vas used.

77. The root-mean-square vave height of a train of irregular vaves

bears the same relationship to the total wave energy as the wave height of
a train of regular vaves. This makes it a more meaningful parameter with
respect to the present study which is concerned with energy dissipationmn.
It is found in Part IV that the use of Hpg results in a bed roughness and
friction factor obtained from irregular wvave experiments being similar to
those seen with regular waves. Therefore Hras; and the average period will
be used to represent irregular waves in the analysis presented here.

78. The near-bottom orbital amplitude is then obtained from the

equation
forms = shobtiny 22)
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vhere h is the depth and k the vave number corresponding to the average
period.

Experimental Methods and Conditions

Laboratory Experiments
79. The response of a movable sand bed to an imposed wvave motion has

been studied in the laboratory using three different apparatus. They are
the oscillating bed, the vave flume and the vave tumnel. Each apparatus
has its own advantages and disadvantages. .

80. In the oscillating bed the sediment is placed on a movable tray
vhich is oscillated in still vater. The biggest disadvantage here is that
since the grains are in motion here they will experience an additional
acceleration force that would not be present in the prototype case. MNadsen
and Grant (1976a) and Nielsen (1979) analyze this difference and find that
vhile the additional force is negligible up to the initiation of motion it
is significant for flows strong enough to generate ripples.

81. This is supported by the experimental results obtained using this
apparatus. Analysis by Vongvissesomjai (1984) shows that the ripple
geometry is significantly different from the geometries obtained from wave
flumes and tunnels. Therefore ripple data from oscillating beds will not
be considered in this study.

82. In a vave flume vaves are generated at ome end, run over a sand
bed, and break on an absorber beach at the other end. This apparatus has
the advantages of a length very much larger than the ripple length and a
depth that is large compared to the ripple height. The disadvantages of
most vave flume experiments are that waves of prototype scale can not be
generated due to the limited scale of the flume, e.g., vaves in most
facilities are limited to periods of 1-3 seconds. Another problem is that
reflection from the beach can distort the wave field in the flume.

83. Vave tunnels are closed conduits with no free surface. The water
in the tunnel is oscillated by a piston or some similar device at one end.
Thus it is possible to obtain prototype scale flows with large velocities
and periods. Another advantage is that the piston produces the bottom
velocity directly whereas in the vave flume this must be calculated from
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the observed surface displacement. Therefore with a vave tumnel it is
possible to produce any kind of near-bottom flow.

84. Due to these factors the vave tunnel is probably the best
apparatus in vhich to study the movable bed problem. Nevertheless some
drawvbacks imposed by the relatively small size of these devices should be
kept in mind. The chief problem is that the height of the tunnel is often
not large compared to the ripple height.

86. For example in the experiments conducted by Carstens et al. (1969)
ripples of height 7 cam were measured in a tunnel that was 30.5 cm high.
Hovever the bottom velocity was calculated neglecting the ripples.
Similarly, Sato (1988) measured ripples of height 6 cm in a tunnel 21 cm
high. When the ripple height is such a large fraction of the tunnel height
the flow field will not be the same as the prototype where the depth is
assumed to be much larger.than the ripple height. Another problem is
caused by the limited length of the test section. In the measurements of
Carstens et al. there vere sometimes as fev as six ripples on the sand bed.
In this situation end effects may have a significant effect on ripple
geometry.

86. The discussion above has shown that both wave flumes and vave
tunnels have their drawbacks. These, together with differences in scale
and the shape of sand grains contribute to the large scatter seen in the
data on ripple geometry.

Field Mea ts

87. There have been only a few field studies in which simmltaneous
measurements of ripples and the ambient wave conditions have been made.
The obvious reason for this is that these field measurements are difficult
to carry out, especially in deep vater and under strong wave motioms.

88. Inman (1957) published the first detailed field study. The ripple
geometry vas measured in wvater depths of up to 30 m by divers. The wave
motion was recorded by a fathometer on1 a boat above the study site.

Nielsen (1984) recorded ripple geometry in the near-shore region at depths
of 1 to 2 m. He measured ripples under both breaking and non-breaking
vaves. (nly the ripples formed by non-breaking wvaves are considered in
this study. The wave conditions were measured using a pressure gauge
placed on the bottom. Miller and Komar (1980b) measured ripples in water
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depths of up to 30 m and measured the vaves vith a pressure gauge.
However, they did not report the ripple heights as satisfactory measurement
vas not possible. '

89. Field measurements are open to criticism on a number of fronts.
Firstly, there is the question of whether the observed ripples are due to
the ambient waves or vhether they were established by some previous wvave
condition. All three of the studies reported above were carried out when
there were fairly constant wave conditions with sediment motion on the
bottom. This provides some basis for the belief that the ripples are due
to the prevailing vave conditions.

80. Other problems are that in the field the waves could be from any
direction and the effect of any steady curremts that may be present. These
drawbacks can be overcome by careful selection of the field sites.
Furthermore the measurements, particularly of the ripple height, are likely
to involve significant errors.

91. Despite ail these sources of error, field observations can be
carried out under -onditions that are not obtainable with laboratory
equipment. In addition since the ultimate ‘aim of the analysis of ripple
geometry is to make predictions in the field it is only logical that the
laboratory results be compared with the field data.

Initiation of Motion

92. Since the formation of ripples from a flat bed requires the motion
of the sand grains it is logical to first consider the flow conditions
under which the grains first move. There are many criteria proposed for
the initiation of motion in the literature. A review is given by Sleath
(1984). 0f these the most generally accepted criterion is the Shields
curve.

93. The Shields parameter was first used to describe the initiation of
motion in steady flows. It was shown by Madsen and Gramt (1976b) that when
the Shields parameter, §, vas defined as in equation (14), i.e., using the
grain diameter as the bed roughness scale, the Shields curve could also be
used to describe the initiation of motion for unsteady flows. The critical
value of ¢ for the initiation of motion, §c, is plotted against S, in Figure
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6 vhich is the modified Shields diagram as presented by Madsen and Grant.

94. The figure shows the curve that is drawn through the data points
obtained from steady flow experiments. The initiation data from
oscillatory flow is plotted along with this curve in Figure 1 of Madsen and
Grant (1976b). It can be seen in that figure that the data do not show the
minimum of the curve very well and for values of S, greater than about 8 a
straight line of y. = 0.55 will fit the data well. However, the data do
-show an increase in y. for S, less than 8--vhich corresponds to sand grains
of diameter 0.4 mm for room temperature. This effect is due to the viscous
sub-layer, vhich is present for these small diameters, shielding the grains
from the turbulence of the outer flow.

95. The data used by Madsen and Grant (1976b) were obtained from
materials with a vide range of specific gravities. That these data plot in
the same region of the Shields diagram indicates that the effects of s are
vell described by including it in the definition of §. Furthermore the
analysis indicated no significant effect of the acceleration parameter A,.
This means that the initiation of motion, which should in theory depend on
four non-dimensional parameters, is quite well described by just two
parameters.

96. It should be kept in mind that the definition of the initiation of
motion is a very subjective one and may explain the large scatter of the
data points around the curve. Mathisen (1989) defined three criteria--
grain motion at irregularities, propagation of bedforms, and grain motion
on an initially flattened bed. He found that while the first two criteria
corresponded quite well with the Shields curve the third criteria was met
only at values of § significantly higher than yc.

97. This is because these experiments were conducted in a wave flume
vith sand grains of diameter 0.12 mm. For these conditions the boundary
layer was laminar, making the initiation of motion more difficult. In any
event since sand beds in the field will have some irregularities the first
criterion is the important one. The fact that bedform propagation occurs
at slightly higher values of § means that ripple formation will begin soon
after the initiation of motion.

98. Initiation of motion under combined steady and oscillatory flow
vas studied by Lee-Young and Sleath (1988) by oscillating a sediment bed at
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right angles to a steady current. It vas found that the Shields curve
predicted the initiation well when the bed shear stress vas calculated as
the vector sum of the current shear strass and the wave shear stress.

99. A field study on ripple generation in a depth of 22 m was reported
by Amos et al. (1988). The bottom velocity and bed conditions were
measured by an instrument package deployed on the bottom. TLe data show
that ripples were observed well below the critical value of the Shields
parameter.

100. However, examination of their Figure 6 shows that these ripples
vere characterized as poorly developed ripples with rounded crests and
evidence of biodegradation. Thus it is likely that these are ripples that
vere created by earlier wave conditions. It is significant that none of
vhat they refer to as well developed ripples lie below the Shields curve.

101. Thus it appears that existing data on initiation of motion under
vaves supports the use of the Shields curve as a criterion. Therefore this
curve will be adopted as marking the lower limit of ripple formation. When
§ is greater than y; then it will be assumed that the bed is rippled with
the geometry to be found from the relations proposed in the next section.

Geometry of Wave-generated Ripples

102. The ripple data to be used in this study, from regular and
irregular wave laboratory experiments and from field measurements, are
summarized in Tables 1, 2, and 3 respectively. All these data are
tabulated in Appendix A.

103. A prelimirary analysis indicated that there were no significant
differences between data from vave flumes and wave tunnels. It should be
noted that the laboratory experiments cover the same range of sediment
sizes observed in the field. However, only a few experiments have been
conducted in the range of periods observed in the field.

104. The geometry of wave-generated sand ripples has been analyzed by
many authors. In most of these analyses the objective has been to find the
non-dimensional parameter that best correlated the data on a ripple
parameter such as the steepness. A curve fit through the data was then
proposed as a predictive relation.
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Table 1

Sumsary of Available Ripple Data from Laboratory Experiments

vith Regular Waves

Source Diameter Range of
of data : of sand periods
() (s)
Mathisen (1989) 0.12 2.6
Sato (1988) 0.18 1-7
0.56 1.5-6
Rosengaus (1987) 0.20 2.2-3
Lambie (1984) 0.09 2.3-7.5
0.15 2.7-7.2
Miller & Komar (1980) 0.178 3-5
Nielsen (1979) 0.082 1.0-1.7
0.17 1.7
0.36 1.7
Lofquist (1978) 0.18 3-8
0.56 2.5-12
Mogridge & Kamphuis (1972) 0.36 1-2.5
0.36 2.5-14
Carstens et al. (1969) 0.19 ~3.53
0.297 ~3.53
0.585 ~3.53
Kennedy & Falcon (1965) 0.095 1.07-2.34
0.32 1.39-1.57
Inman & Bowven (1963) 0.2 1.4-2
WT: vave tunnel WF: wvave flume
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Number of
data points

12
10

20
27

24
10
10

23
50
21

17
19




Table 2

Summary of Available Ripple Data from Laboratory Experiments
Using Irregular Waves

Source Diameter Range of Type of Number of
of data of sand significant period apparatus data points
(mm) (s)
Mathisen (1989) 0.12 . ~2.5 WF 9
0.2 ~2.b WF 3
Sato (1988) 0.18 3-6 WT 21
0.56 1.6-3 NT 13
Rosengaus (1987) 0.2 _ ~2.5 WF 8
WT: wave tunnel ‘WF: vave flume
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Table 3

Summary of Available Ripple Data from Field Measurements

Source ' Range of Range of Number of

of data grain diameters significant period data points
(mm) (s)

Nielsen (1984) 0.11-0.62 5.7-12.9 39

Miller and Komar (1980)* 0.165-0.287 6-18.1 33

Inman (1957) 0.081-0.635 5-16 b3

*Ripple wavelength only
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106. Since it vas shown earlier that the ripple geomestry must depend on
at least four non-dimensional parameters this approach may seem
oversimplified. However, as shown in the previous section, it vas found
that the initiation of motion could be described by two parameters (¢ and
S,) vith only a veak dependence on one (S,). Furthermore, the variation in
the results from different experimental facilities is so great that a more
sophisticated approach involving more than two parameters does not appear
varranted.

106. Therefore, this approach will be adopted in the remainder of this
section in the analysis of ripple vavelength, height, and steepness. The
data from regular and irregular vaves will be analyzed together for the
purpose of comparison. Before the analysis a brief description of the
mechanism of ripple formation will be given.

le fo ion and disappearance

107. Regular Waves. It has been observed by Rosengaus (1987) and
Mathisen (1989) that grain motion begins at bed irregularities. The
process of ripple development from an initial irregularity has been
described in detail by Nielsen (1979) and Rosengaus (1987).

108. Initially, before the flow separates at the crest of the
irregularity, the jet flow down the side will tend to create a depression
in front and pile up sand in a hump beyond it. When the flov separates at
the crest a lee vortex is formed which acts to entrain sand from the lee
side and build up the original crest while making the trough deeper.

109. This mechanism acts on both sides of the original ripple creating
tvo new ones which in turn act as "originator" ripples. While the patch of
ripples thus formed spreads outwards the vavelength and height of the
ripples adjust until they reach an equilibrium.

110. For moderate flow intensities the result is a set of regular,
sharp-crested, two-dimensional ripples. The equilibrium height is the
balance between erosion of the crest by the flow over it and crest build-up
caused by the lee vortices.

111. As the flow intensity increases the ripple height and length
increase while the steepness remains essentially constant. The steepest
sections of the ripples have been observed to have slopes approximately
equal to the angle of repose of the bed material in water.
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112. At higher flovw intensities the lee vortices are not strong emough
to maintain the crest leading to a decrease in steepness. The vavelength
remains about the same vhile the ripple height decreases. The crests are
more rounded and the ripples become three dimensional. The ripple

«ensions are also more variable.

113. Finally vhen the flov is sufficiently intense the ripples
disappear altogether. The bed is essentially flat. However, the strong
oscillatory motion causes a layer of sand grains to move to and fro on the
bed. This is referred to as sheet flow.

114. Ixregular waves. The above description was based on regular vaves
in the laboratory. The only description of the behavior of a bed under
irregular field waves is given by Dingler and Inman (1976). They obtained
instantaneous records of the bed profile using a high-resolution sonar.

: 115. Their results show that under strong irregular wvave motion the bed
can go from equilibrium ripples to a flat bed to developing ripples and

back to a flat bed in a foev minutes. This demonstrates the uncertainty

that is present when it is attempted to apply observations made in small-
scale laboratory experiments to the field.

' 116. Laboratory experiments with irregular vaves were made by Rosengaus
(1987), Mathisen (1989), and Sato (1988). Rosengaus and Mathisen did

ripple measurements at moderate flow conditions and obtained ripple
dimensions that vere statistically steady. Sato (1988) increased the flow
intensity up to sheet flov. He found that the ripple dimensions varied by
about 10% during the runm.

117. The variability between successive waves in Sato’s wave record is
about the same as in the wave record given by Dingler and Inman (1976).
Hovever, the longest period used by Sato was 6 seconds while the large
vaves measured by Dihgler and Inman had periods of 10-12 seconds. This is
probably the reason why Sato (1988) did not observe a flat bed during the
Trun. |

118. Mathisen (1989) found that even under moderate wave conditions the
ripples under irregular waves vere more variable than ripples formed by
regular vaves of a comparable intensity. A detailed analysis showed that
vhile the differences in commonly measured characteristics, such as the
ripple steepness, vere small, ripples under irregular waves had crests that
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vere more rounded than ripples formed by regular vaves.

119. These observations indicate that ripples formed by irregular field
vaves may be different from those observed in the laboratory under regular
vaves. Therefore the data on geometry of ripples formed by regular and
irregular laboratory waves and by vaves in the field will be compared in
the next three sections to examine what differences, if any, are present.
Ripple vavelength

120. The ripple length, unlike the ripple height and steepness, is not
generally regarded as being significant vhen estimating the equivalent
roughness of a rippled bed. However, the analysis of this parameter may
bring out the connection, or lack thereof, between laboratory and field
ripples. This is especially true because measurements of ripple length in
the field are more reliable than measurements of ripple height.

121. Since the bottom orbital diameter, Ap, is a measure of the
horizontal displacement of a water particle due to the wvave motion, it is
natural to seek a relationship between A and the ripple wavelength 1. It
has been observed by many authors, for example Mogridge and Kamphuis
(1972), that ) is proportional to Ap up to a certain critical flow
intensity. Mogridge and Kamphuis stated that beyond this point the ripple
length is comstant.

122. Regular waves. Figure 6 is a plot of the ratio 1/d against Ap/d
for all the laboratory data listed in Table 1 on ripples formed by regular
vaves except those of Sato (1988), Mathisen (1989), and Rosengaus (1987).
The data have been divided into four classes based on the value of the
parameter D,, which is defined by

D, = 104“1—;2 (23)
123. The parameter D, with an additional factor of (s-1) in the
denominator is the same as that suggested by Mogridge and Kamphuis (1972)
to characterize the flow intemsity at which 1 ceased to be proportional to
Ap. It is seen from Figure 6 that for lov values of Ap/d the data are
mostly on the straight line, given by

A =134 (24)
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Figure 6. Non-dimensional ripple wavelength, A/d, plotted against the non-
. dimensional orbital amplitude, Ap/d, for ripples gemerated by
regular laboratory vaves. The data are grouped according to D,.
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that vas suggested by Miller and Komar (1980a). As the value of Ap, which
represents the strength of the flow, increases, the data points deviate
from the line and attain maximum ripple length. Further increase in Ay
results in a slight decrease in vave length, as pointed out by Nielsen
(1979) .

124. Vhen the data are grouped according to D, as in Figure 6, it is
seen that tae deviation from the straight line and the attainment of a
maximum ripple length take place at progressively higher values of Ap/d for
successively lower values of D,. The data with the lovest values of D,,
marked by a + symbol, shovw an increase in ) as Ap increases with a constant
of proportionality lover than that in equation (24). Howvever, these data
do not shov a maximum ripple length.

126. Plots similar to Figure 6 vere made with the data divided
according to many dimensional and non-dimensional parameters, such as the
vave period, grain diameter, and the Shields parameter. It was seen that
data points that lay awvay from the straight line given by equation (24)
vere those for which the shear stress was high. However, D, vas found to be
the best at indicating the maximum ripple lemgth.

126. Miller and Komar (1980a) stated that this deviation depends on the
grain diameter. This observation was based chiefly on their Figure 6 which
shovs the vave tunnel data of Carstens et al. (1969) and Mogridge and
Kamphuis (1972). Since all the experiments of Carstens et al. vere done at
the same period of oscillation, D, for their data depends only on the grain
diameter. This would make it seem as though the deviation depended only on
the grain diameter.

127. Figure 6 shows that the maximum vavelength observed on a sand bed
is greater when D, is small. The physical significance of D, is not
immediately apparent. The dependence on d is easil.y explained as smaller
grains have lower fall velocities. Therefore smaller grains are more
likely to follow the fluid motion resulting in the ripple length depending
on Ap.

128. The presence of the wave frequency in D, suggests that for two
identical beds subject to the same orbital amplitude, the ripples on the
bed subject to the lowver frequencies will remain proportional to Ap up to a
higher value of A,. This may be because the bed has more time to react to

43




the lower frequency (longer period) motion leading to a greater dependence
on Ayp.

129. Irregular field wvaves. The available data on ripple length from
field measurements is plotted, using the same axes as Figure 6, in Figure
7. It is seen that the data from the different investigations, vhile
showing considerable scatter, plot in the same area of the graph. However,
the trend is very different from the variation shown by laboratory waves.

130. Figure 8 shows the same data as Figure 7 grouped according to the
value of D,. The solid line is equation (24) vhile the dashed line is drawn
to indicate the trend of the field data. An important point is that the
range of D, for the field measurements, 0.02 to 0.65, is quite different
from the range in the laboratory experiments which vas 0.07 to 14.5.

131. Figure 8 shows that several points lie considerably to the left of
the solid line which represents the relationship of equation (24). The
general trend of the field data is that A decreases with increasing Ay.

This bebavior is most clearly shown by the data denoted by the + and *
symbols, vhich mark the two lovest ranges of D,. Only the data in the
highest range of D,--marked by an x--show an increasing trend similar to the
data from regular wave experiments plotted in Figure 6.

132. Since the different ranges of D, make the comparison of data in
Figures 6 and 8 difficult, field and laboratory data are plotted together
in Figure 9 for two ranges of D,. These ranges are at the upper and lower
ends of the region of overlap in the values of D, for the two sets of data.
This figure shows that for the range of D, from 0.256-0.4 the laboratory and
field data, shown by an x symbol and a * symbol, respectively, behave in the
same vay. However, for the lower range of D, from 0.09~0.12 it is clear
that the behavior of the field data, indicated by a +, is quite different
from the laboratory data which are shown by circles. The field data show A
decreasing with increased Ap vhile the laboratory data follow equation
(24).

133. Despite the large scatter in Figure 8 the data show some
organization vhen grouped according to D,. Therefore, it is difficult to
explain the divergence from laboratory data as caused solely by the errors
involved in making field measurements. One way in which the two data sets
can be reconciled is by redefining the equivalent wvave parameters for the
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field data. This could be done until the points that fall to the left of
the solid line in Figure 8, which is equation (24), are moved onto it. The
data that shov a decrease of A with increase in Ay could then be explained
as the result of flov intensities much higher than those rbquired to cause
deviation from equation (24).

134. Hovever, this would be an arbitrary process and would not
guarantee that the D, values of field and laboratory data falling in the
same area would agree. Again, a satisfactory adjustment for the ripple
length may not be satisfactory for other ripple dimensions.

136. In any case since the only information known about the field vaves
are the root-mean-square vave heights and the average period, an adjustment
of this kind would be a dubious proceeding. All that can be said is that
the ripple lengths observed in the field behave quite differently from
laboratory data. Whether this is due to the incorrect specification of the
equivalent vave or due to some mechanism that is present only when the
vaves are irregular is unclear.

136. Irregular laboratory waves. The 'question of the validity of the
field data can be resolved by examining the data on ripples gemerated by
irregular vaves in the laboratory. Table 2 shows that there are just three
data sets in vhich the ripple geometry generated by irregular waves has
been measured. Two of these, the data sets of Mathisen (1989) and
Rosengaus (1987), were conducted in the same wvave flume and will be
considered together. |

137. These data sets will be analyzed by plotting the results for
regular and irregular vaves in the same manner as in Figure 6. It is
important to plot the data from regular waves using these experimental set-
ups separately because this will show whether the trend of the regular wave
data is changed by a particular apparatus. It was for this reason that the
regular vave data of Mathisen, Rosengaus, and Sato were not included in
Figure 6. Comparison of the plots of the regular and irregular wave data
vill enable the effects of wave irregularity to be seen in isolationm.

138. Figure 10 shows that data of Mathisen (1989) and Rosengaus (1987)
for regular and irregular vaves. The values of D, are 0.7-0.8 for the
0.12-mm sand and 1.1-1.3 for the 0.2-mm sand. The irregular waves are
represented by Hrys and the average period. The figure shows that while the
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data from regular and irregular vaves do not coincide they both agree quite
vell with the trend for regular vaves. The data lie on the solid line up to
about Ap/d = 400 and then deviate to the right. Data with a comparable
value of D, are denoted in Figure 6 by circles. Comparing Figure 6 and 10
it is seen that the data of Mathisen and Rosengaus are in agreement with
the other regular wave data. ,

139. The ripple data of Sato (1988) from regular and irregular wave
laboratory experiments are plotted in Figures 11 and 12, respectively.
Figure 11 shows that the regular vave data deviate considerably from the
straight line equation (24). However, comparison with data that have
similar values of D, in Figure 6 shows that the data in these higher ranges
of D, in Figure 11 are consistent with the other regular vave data. The
data in the lowest range of D,, while showing an increase in A with
increasing Ap that is in agreement with the trend of the other regular wave
data, plot below the comparable data in Figure 6.

140. Figure 12 shows the data on ripples formed by irregular waves
using the same apparatus. Comparing with Figure 11 it is seen that there
is a difference in the trend of the two data sets. For example, data with
D, around 0.8, marked by a *, lie a little below the corresponding regular
vave data and show a slight decrease in A with increasing A,. The greatest
difference is seen in the data with the lowest value of D,, marked by a +
symbol. The irregular wave data do not show the increase in A with Ay that
is shown by the regular wave data. | .
| 141. These observations must be regarded as tentative because they are
based on a very small number of data points. However, it does seem that
the irregular wave ripple data of Sato (1988) differ from the regular wave
data in a manner similar to the way in which the field data differ from the
regular vave data. For example the trend in Figure 11 is fairly close to
the solid line while the trend in Figure 12 seems to be more in agreement
vith the dashed line which shows the trend of the field data. This
similarit‘y lends support to the view that the difference between field and
laboratory data is due to the irregularity of the field vaves and not
entirely to errors in measurement.

142. Comparing Figures 10 and 12 it is seen that even when the value of
D, is comparable the irregular wave data of Mathisen and Rosengaus differ
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from those of Sato. The reason is that in the experiments of Sato the
shear stress, as measured by the parameter §, was much higher than in the
other experiments. Sato’s experiments had ¢ in the range 0.07-0.79 with an
average of 0.36 while the experiments of Mathisen and Rosengaus had §
ranging from 0.08 to 0.21 with an average of 0.16.

. 143. Summary of A-Ap relationship. The analysis of the relatiomship
betveen the ripple length and the orbital amplitude shows that most field
data, vith the vaves specified by the root-mean-square vave height and
average period, do not follow the simple relationship given by equation
(24). This deviation is most marked for low values of D,. Similar behavior
vas observed in the irregular wave data of Sato (1988) but not in the data
of Mathisen (1989) and Rosengaus (1987).

144. These observations can be explained by the following argument.
Since the range of grain diameters in all these experimemts is 0.1-0.6 mm
differences in D, are mainly due to differences in the wave period. The
differences in ripple geometry caused by regular and irregular waves ot the
same intensity has been attributed by Mathisen (1989) to the domination of
the ripple generation process by the larger waves. This would eiplain vhy
ripples generated by irregular waves do not follow equation (24).

146. However, the fact that the data with higa values of D, are quite
close to this equation suggests that this change in the process is seen
only vhen the wave period is large enough, i.e., vhen D, is small. This is
to be expected since the larger waves will have a more significant effect
if they act for a longer time. '

146. Comparing the data of Rosengaus and Mathisen with the data of Sato
it is seen that there is also an effect of the Shields parameter. For a
given period, a wvave that, for example, is twice as large as the average
will have a greater effect on the bed when the average wave intensity, as
measured by the Shields parameter, is higher.

147. For a vave period of 8 seconds and a grain diameter of 0.2 mm,
vhich are typical of the field, D, is found to be 0.126. As shown in Figure
9 the field and laboratory data behave quite differently at this value of
Dy. - Therefore the use of relations based on regular wvave laboratory data
to predict ripple geometry in the field under these conditions could result
in considerable error. Also the data from irregular wave laboratory
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experiments are too few and conducted at too high a value of D, to be
applied to field conditionms.

148. Thus it can be concluded that the best method of predicting field
ripple geometry, at the present time, is through relations based on field
measurements. Simple equations for predicting the ripple length, height,
and steepness for field ripples will be developed in the next three
sections.

149. Predictio ripple h. This is done by plotting the
ratio A/Ap against a non-dimensional parameter that represents the
intensity of the flow. Nielsen (1979) suggested that the parameter 0,
defined by

0= 1o= [z (25)
vas able to correlate the data on ripple length successfully. He plotted
the data of Inman (1967) and Dingler (1975) against § and obtained a good
correlation. Hovever, when the data presented by Nielsen (1984), which
were collected in shallow vater, are plotfed on the diagram they do not
correspond with the earlier data.

1560. Before developing a predictive relation it is necessary to decide
uj;on the method that is to be used to determine the expression that gives
the best fit. A commonly used measure is root-mean-square error r, defined

by

i
Bev-9)2
r= [—‘(—y—?—] (26)

n-

vhere y is the measured value and y the predicted value and n is the number
of data points.

161. The drawback of this measure is that while it gives an idea of how
far the proposed line is from the data it does not give any measure .of how
much that difference is when compared to the actual value of the data
point. A more suitable measure is the relative error e, defined by
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152. When e is minimized the resulting fit is a least-squares fit on a
log-log plot. A perfect correlation will result in e being equal to 1.
This measure of the error is more suitable than r when the data span.
several orders of magnitude. A value of e = 1.2, for example, would
indicate an error of *20% in the curve fit.

163. It was found that the available field data on ripple length was
vwell correlated by the non-dimensional parameter X, defined by

0

vhere S, is defined in equation (13). Figure 13 shows the ratio A/Ap
plotted against the parameter X for the field data. The solid line is the
proposed relation for ripple lengths in the field and is given by

1.7X0.5 X<3

= (29)
2.2X-0.75 X>3

>|>-
o

The value of the relative error for this relation was 1.48. If the root-
mea 3quare error is used it results in a significant bias towards the
larger values. Since equation (29) is an empirical fit it should only be
applied in the range 0.2 < X < 50.

164. Another parameter that correlates the field data well is i‘ (Ap/d)
which wvas suggested by Sato (1987). When a relation of the same form as
equation (29) is fit to the data using this parameter e is found to be
1.66. If # is used as the dependent variable, as suggested by Nielsen
(1979), e is found to be 2.36. X is used in this report instead of the
parameter of Sato because it is found to correlate other aspects of field
ripple geometry as well as the friction factor observed in laboratory
experiments.

1656. The data from laboratory experiments with irregular wvaves are
plotted in Figure 14 along with a line representing equation (29) and a
dashed line showing the trend of the data obtained using regular wvaves.
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Figure 13. Non-dimensional ripple length, A/Ap, against the parameter X for
the field data of Inman (1957), Komar and Miller (1980), and
Nielsen (1984) along with equation (29)
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Figure 14. Non-dimensional ripple length, A/Aj, against X for the irregular

vave laboratory data of Mathisen (1989), Rosengaus (1987), and

Sato (1988) along with equation (29) and a line showing the trend
of the regular wave laboratory data
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The data from Mathisen (1989) and Rosengaus (1987) plot slightly above the
line for the regular vave data vhile the data of Sato (1988) lie between
the curves for regular vave and field vave data. This is in agreement with
the analysis in the preceding section.

166. Therefore equation (29) is proposed as a nev relatiom for
predicting the length of field ripples. For ripples formed by regular
vaves in the laboratory however, it is found that using the parameter X
does not result in a better correlation than if the parameters suggested by
Nielsen (1979) and Sato (1987) are used. For this reason, and also because
the interest is in predicting ripples in the field, relations are not
developed for ripples formed by regular laboratory vaves.

167. Prediction of the ripple height. As in the case of the ripple
length, the bottom orbital amplitude is selected to non-dimensionalize the
ripple height. The ratio 5/Ap is plotted against X in Figure 16 for the
field data. The solid line is the proposed relation which is given by

0.27x-0.5 X<3

2’ = (30)
b 0.47x-1.0 I>3

158. The data plotted at the bottom of Figure 15, i.e., with g/Ap =
10-3, are the points where a flat bed was observed. This suggests that the
disappearance of ripples occurs around the point X = §0. The value of the
relative error obtained using equation (30) wvas 1.56.

169. The ripple heights obtained using irregular vaves in the
laboratory are plotted in Figure 16 along with the curve showing the trend
of the regular vave data and the proposed relation given by equation (30).
Here too it is seen that the data of Mathisen and Rosengaus lie somewhat
above the curve for the regular vave data. However, comparing Figures 15
and 16 it is seen that the data of Sato plot only slightly above the region
occupied by the field data. The flat-bed data points of Sato are also not
in agreement with the field data.

160. Prediction of ripple steepness. Equations (29) and (30) can be

combined to give a relation for the steepness as
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Figure 15. Non-dimensional ripple height, 7/Ap,, against X for the field data
of Inman (1957), Komar and Miller (1980), and Nielsen (1984)
along vith equation (30)
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0.16 <3

* = (31)
0.21Xx-0.35 I>3

The value of the relative error for this relation is 1.27. Sato (1988)
used the parameter y(Ap/d)V/3 to correlate the field data on ripple
steepness. When a relation of the form suggested by him is fit to the data
the value of the relative error is 1.31.

161. Equation (31) is plotted in Figure 17 along with the trend of the
regular wvave data and the irregular wave data from the laboratory. It is
seen that the steepness of the field ripples is only slightly lower than
that of the ripples formed by regular vaves. The data of Mathisen (1989)
and Rosengaus (1987) lie close to the regular wave data as expected but the
data of Sato (1988) show a lover steepness than the field data. This is
because the data of Sato shov longer ripple lengths and smaller ripple
heights than the field data for comparable values of X. Sato (1988) used a
vave tunnel that was 21 cm high. The largest ripple height measured under
irregular vave conditions vas 4.9 cm. It is possible that these ripples
did not grov to their full height due to the limited tunnel height. This
may be the reason for the low ripple heights observed by Sato.

162. Disappearance of ripples. Sato (1988) analyzed data from regular
and irregular laboratory experiments and from the field and proposed a
criterion for the disappearance of ripples based on the parameter y and
Ap/d. However, examination of his Figure 12, which is a plot of the field
data, reveals that while his criterion is good for laboratory rippleé it is
only approximately true for the field data.

163. A simpler relationship that is as accurate can be obtained by
observing the flat bed data in Figure 15. From this figure an approximate
criterion for the disappearance of ripples can be derived as

X>50 (32)
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Figure 17. Ripple steepness, /), against X for the irregular wave
laboratory data of Mathisen (1989), Rosengaus (1987), and Sato
(1988) along with equation (31) and a line showing the trend of
the regular wave laboratory data
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PART IV: MOVABLE BED ROUGHNESS

164. The relationship between the geometry of ripples and the wvave
motion that created them was investigated in the preceding section.
Predictive relationships for the ripple geometry under field conditions,
vwith the vaves specified by the root-mean-square wave height, Hrys, and the
average period, vere proposed. The objective of this section will be to
reviev the relationship betwveen bed geometry and the friction factor in
order to propose relations that could lead to the establishment of friction
factor relationships to be applied in the field.

165. It wvas concluded in Part II that the only reliable method of
measuring the friction factor on a movable bed was through measurements of
the energy dissipation in the wave boundary layer. Therefore the
investigation of the effects of the bed geometry on the friction factor
requires the simmltaneous measurement of the wave conditions, the
-associated bedform geometry, and the resulting emergy dissipation.

166. Wave energy dissipation in the field is measured by recording the
change in vave height between two points. After allowances are made for
changes due to refraction and shoaling the dissipation is calculated from
the vave attenuation ascribed to bottom friction. Such studies have been
carried out by Ivagaki and Kakinuma (1963, 1967) and Treloar and Abernathy
(1978) . However, the ripple geometry was not recorded in any of these
studies.

167. This means that the analysis in this chapter will rely entirely on
laboratory experiments, most of which have been conducted using a regular
vave motion. It was found in Part III that wave irregularity resulted in
the ripple geometry differing from that formed by regular waves. This
meant that ripple data from laboratory regular wave experiments were not
applicable under field conditions.

168. ABearing this in mind it would seem overly optimistic to expect the
results of energy dissipation experiments with regular waves in the
laboratory to be relevant to irregular field waves. Nevertheless this is
the only vay in which the field ripple geometry relations developed in Part
III can be used to predict the bed friction. The alternmative is to rely on
field studies that have been done without observations of the bottom
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Sources of data

Mathisen (1989)

Rosengaus (1987)
Lofquist (1986)
Sleath (1985)
Carstens et al. (1969)

Bagnold (1946)

Table 4
Summary of Available Laboratory Data on Energy Dissipation under Waves

Type of

apparatus
and wave

condition

» R

WF
WF, IR

-
(o]

WF, R
WF, IR
wT,
B

)

R
0B, R
WT, R

0B, R

Diameter
of sand

(zmm)

12
2

0.
0.
0.
0.
C.
0.

=N NN =

8
0.55
fixed bed
0.19
0.297
0.585
fixed bed

Range of

periods

O W

onE

?N?nbwwu I~

Dehl oo -~
w

W )
mmmm,mo
-

o
1
o2}

WF: vave flume; WT: wave tumnel; 0B: oscillating bed
R: regular waves; IR: irregular waves
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geometry.

169. The available experimental data on energy dissipation under waves
are summarized in Table 4. The details of the experiments and the
derivation of the friction factor from the measurements are discussed in
Appendix A. It should be noted that the data sets of Sleath (1986) and
Bagnold (1946) for energy dissipation over a fixed, rippled bed are
included in Table 4. These data are included because the energy
dissipation over a movable bed is due to a combination of the form drag
due to the bedforms, the skin friction due to the sand grains, and the
effect of a moving layer of grains. The analysis of the fixed bed data
should help to determine the relative magnitude of these effects.

Energy Dissipation over a Fixed Bed

170. Bagnold (1946) and Sleath (1985) measured energy dissipation over
beds with fixed artificial rippleé using an oscillatory bed apparatus.
These results have been analyzed in detail by Sleath (1985). For our
purposes the chief use of these data is to establish a link between the
ripple geometry and the equivalent bed roughness.

171. The simplest relation is to set the equivalent roughness, k;, to
be proportional to the ripple height, i.e.,

kn ~ " (33)

Grant and Madsen (1982) concluded that wave-generated ripples should be

quantified by both their height and their concentration and suggested the
form

K ~ r,il (34)

172. The measured values of the friction factor over the fixed bed can
be converted into a value of k, using the Grant-Madsen friction factor
relation in equation (7) and the known value of the bottom orbital
amplitude. The ratio kn/9 is plotted in Figure 18 against the flow Reynolds
number Re defined after equation (2). It should be noted that for a fixed
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bed the parameters s, d, and g are not present resulting in the flow being
described by just one non-dimensional parameter.

173. The figure shows that while some points in each data set shovw a
trend in increasing k,/f with increasing Re most of the points are clustered
around a constant value. This value, which is the constant of
proportionality in equation (33), is seen to be around 5 for the data of
Bagnold and about 3 for the data of Sleath. .

174. Sleath (1985) used a sinusoidal profile for his artificial ripples
vith a steepness of 0.23 vhile Bagnold (1946) used a profile composed of
circular arcs which formed sharp-crested ripples wvith a steepness of 0.15.
Sleath (1985) found that the low values of the friction factor, and
therefore of k,/7, were observed during the tramsition from laminar flow
vhen flov separation and vortex formation were just begimning.

176. Since the flow over sand ripples is most often rough turbulent
these points are not important for this analysis. Sleath argued that the
effect of transition wvas less apparent in the data of Bagnold because the
sharp crest of the ripples in those experiments would have caused
separation at the crests even at low flow velocities.

176. Both Sleath and Bagnold used a constant value of the ripple
steepness throughout their experiments. Therefore it is not possible to
determine which of equations (33) and (34) provides a better representation
of the equivalent roughn:ss. If the ratio k,/(73/1) is plotted against Re
the constant of proportionality in equation (34) is found to be 33 and 12.5
for the data of Bagnold and Sleath, respectively.

177. Equilibrium ripples formed by waves are sharp crested and have
slopes of about 30°. In these respects they resemble the profile used by
Bagnold (1946) which had a crest angle of 120°. However, these artificial
ripples had a very sharp edge, a feature that sand ripples can not have.
Observations of ripples under irregular waves by Mathisen (1989) have shown
that the crests are more rounded than if the vaves were regular. Thus the
geometry of field ripples is probably somewhere in between the two extremes
represented by the artificial beds used by Bagnold and Sleath. It should
also be noted that both these authors used a smooth surface for their
ripples while sand ripples have a rough surface. This may result in the
skin friction felt by the sand ripples not being reproduced in the
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laboratory. When the ripple height is much larger than the grain diameter
the skin friction is expected to be much smaller than the form drag.
However, the roughness of the ripple surface vill influence the separation
at the crest.

178. In summary it can be said that the analysis of the fixed bed
experiments show that both equations (33) and (34) are plausible
representations of the equivalent roughness of a rippled bed. The constant
of proportionality for sand ripples can be expected to be betveen 3 and 5,
and 12.5 and 33 for equations (33) and (34), respectively.

Energy Dissipation over a Movable Bed

179. The results of energy dissipation measurements over movable sand
beds will be analyzed to determine the appropriate equivalent bed roughness
scales in this case. It is seen in Table 4 that there are only four data
sets vhere simltaneous measurements of ripple geometry and energy
dissipation have been made. Some aspects of these experiments are
discussed in Appendix A.

180. O0f these four data sets the largest is the set presented in
Lofquist (1986). Some of these measurements were made under conditions
that resulted in the end effects having significant effects on the ripple
geometry. For this reason these data were not used in the analysis of
ripple geometry.

181. However, our purpose in this section is to quantify the energy
dissipation over ripples whose geometry is known. Analysis by Lofquist
(1986) has shown that there are no significant differences between the
shear stresses observed over the "natural” and the "distorted" ripples.
Therefore all the equilibrium measurements of Lofquist will be used here.

182. Lofquist also measured the shear stress during ripple growth from
an initially flat bed. These ripples are not in equilibrium with the flow
and it could be expected that this would affect the energy dissipation.

The results show that it takes from 30 to 100 wave cycles to increase the
ripple height by 1 cm. Since this is quite a slow rate of growth the effect
of disequilibrium on the shear stress is likely to be small. Furthermore
these data increase the ranges of ripple height and steepness over which
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dissipation has been measured. For these reasons the results from the
groving ripples will also be considered in the analysis though they will
not be used to establish predictive relations. .

" 183. The best fit relations established in this section will be based
on the relative error detined in equation (27). Since the ultimate
objective is to predict the friction factor and also because it is the
friction factor that is measured, the relative errors given will be those
for the predicted friction factor and not for the equivalent roughness. To
avoid the analysis being dominated by the large number of data in Lofquist
(1986) the best-fit coefficient for the other sets will also be reported in
wost cases. '

Regular Waves

184. The four data sets on energy dissipation over equilibrium ripples
under regular waves are those of Carstens et al. (1969), Lofquist (1986),
Ro;engaus (1987), and Mathisen (1989). Since Mathisen used the same
apparatus as Rosengaus these two data sets will be considered together.

186. The data from fixed bed experiments suggested that either equation
(33) or (34) could be used to define the equivai ent roughness. The ratio
kn/9 is plotted against the Shields parameter, ¥, in Figure 19 for the data
on equilibrium ripples together with the data from the growing ripples.

The value of k, was calculated using equation (7) along with the measured
values of £y and Ap.

186. Although the scatter of the data is quite high the figure shows
that the ratio k,/y is well represented by a constant value. The scatter of
the data is higher at low flov intensities for reasons discussed in
Appendix A. The best-fit valiies of the constant of proportionality in
equation (33) are 5.2, 4.0, and 3.0 for the equilibrium ripple data of
Carstens et al., Lofquist, and Mathisen and Rosengaus, respectively. The
overall best fit value is 4.0. The data from the growing ripples are
consistent with the equilibrium ripple data of Lofquist.

187. When equation (34) is used to scale the equivalent roughness the
overall best fit constant is 26.0. However, the value of e is 1.35 while
it wvas 1.27 for the overall fit using equat’ “33). When the individual
best fits for each data set are compared the - uaes obtained using
equations (32) and (34) are 1.27 to-1.46, 1.22 to 1.28, and 1.25 to 1.22

69




- LEGEND
+ Carstensetal.
| * Lofquist .
o Mathisen and Rosengaus
x Lofquist - growing ripples
) +
+
10 S
> |
*
H K
4 x %
.’M : + + ‘4,
s O + +
4 ++;§6§* ‘t: L +
oo +
‘3 :.'l- & & +
£ » L
l ox ° 50
0 — T I 1 1 ' 1T T
0 0.1 0.2 03 04 0.5 0.6 0.7

Figure 19. The ratio of equivalent roughness to ripple height, kn/7, plotted
against the Shield parameter, ¥, for the regular vave data of
Carstens et al. (1969), Lofquist (1986), Rosengaus (1987), and
Mathisen (1989)
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for the data of Carstens et al., Lofquist, and Mathisen and Rosengaus,
respectively.

188. These tvo representations are compared in Figure 20 which is a
plot of k,/n against the ripple steepness 7/A. It is seen that the solid
line representing the equation

kn = 4” (35)

is a better fit than the dashed line which is equation (34) with a constant
of 26. The use of an expression that had the form of equation (36)
mltiplied by some pover of the ripple steepness did not improve the fit
given by equation (35). Therefore this simple expression is proposed to
predict the equivalent roughness of a rippled bed for regular waves.

189. The measured values of the friction factor are plotted against
Ap/Xy in Figure 21 with k, calculated from equation (35), along with the
Grant-Madsen friction factor relationship of equation (7). If equation
(35) is a perfect correlation all the points should fall on this curve. It
is encouraging that the data from growing ripples measured by Lofquist
(1986) are also well represented by the curve even though they were not
used to find the best-fit coefficient in equation (35).

190. It should be recalled that the fixed bed experiments of Sleath
(1985) and Bagnold (1946) gave values of 3 and 5§, respectively, for the
constant in equation (36). The range is the same as was obtained for the
three data sets for movable sand beds. This indicates that the bulk of the
energy dissipation over a rippled sand bed is due to the form drag created
by the ripples and not to the skin friction caused by the sand grains,
contrary to the results obtained by Vitale (1979).

191. Jonsson (1980b) suggested that the equivalent roughness, kn, for a
movable bed could be represented by k, = 250 d. The ratio k,/d is plotted
against the Shields parameter y in Figure 22. The overall fit to the
equilibrium ripple data results is a relative error of 1.44 for the
relation k, = 480 d. While this value is different from that suggested by
Jonsson (1980b) it should be remembered that he used a different friction
factor relation to calculate k. It could be argued that the data in Figure
21 could be fit better by a relation of the form kn/d = £(y).

n




Figure 20. The ratio of equivalent roughness to ripple height, kn/7, plotted
against the ripple steepness, 7/A, for the regular vave data of

Carstens et al. (1969), Lofquist (1980), Rosengaus (1987), and
Mathisen (1989)
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Figure 21. The measured friction factor, f,, plotted against the relative
roughness, Ap/k,, for the regular wave data of Carstens et al.
(1969), Lofquist (1980), Rosengaus (1987), and Mathisen (1989)
along with a line representing equation (7). k; is calculated
from equation (35).
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Hovever, it was found that using an expression f£(§) = ay® only decreased the
relative error to 1.43. This is greater than the error of 1.27 obtained
using equation (35). Therefore it was concluded that k, vas not well
represented by a function of d.

192. Figure 22 shows that vhile the data as a whole show considerable
scatter, some individual data sets are well represented by a constant value
of ky/d. Vhen this relation is fit to the individual data sets the
resulting errors are 1.265, 1.44, and 1.23 for the data of Carstens et al.,
Lofquist, and Mathisen and Rosengaus, respectively. It is seen that the
errors for the data of Carstens et al. and Mathisen and Rosengaus compare
favorably vith the fit using equation (33). However, it was also found
that the error obtained with kn/d set to a constant was 1.76 for the growing
ripple data of Lofquist. Thus it is seen that k, correlates well with the
grain diameter only for the data sets that had equilibrium ripples with a
"natural," i.e., not affected by end conditions, geometry.

193. This indicates that the correlation between kp and d for "natural®
ripples occurs because there is a correlation between d and the ripple
geometry for "natural" ripples formed by regular waves. It was found in
Part III that this geometry is quite different from that seen in the field.
Therefore the use of regular wave laboratory data to develop a relation
betveen the grain diameter and the equivalent roughness would result in an
expression that is not applicable in the field.

Effect of Sediment Transport

194. Figure 19 shows that there are two data points, from experiments
vith a large value of ¥, that show roughnesses mich larger than what is
predicted by equation (35). These points correspond to the two points in
Figure 21, marked by + symbols, that lie above the solid line at a value of
Ap/ky of around 15. This was attributed by Grant and Madsen (1982) to the
increased sediment transport that takes place when the shear stress, and
therefore ¢y, is high. It is seen from the figure that only Carstens et al.
have carried out measurements of dissipation in the range y > 0.3.

195. Grant and Madsen (1982) derived an expression for the equivalent
roughness due to a near-bottom layer of intensive sediment transport.

Their analysis suggested that this roughness, indicated by k;;, was of the
form
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Figure 22.

The ratio of equivalent roughness to grain diameter, kn/d,
plotted against the Shield parameter, ¥, for the regular vave
data of Carstens et al. (1969), Lofquist (1980), Rosengaus
(1987), and Mathisen (1989)
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ks v d(y¥ - 0.7y¥c)? (36)

vhere §c is the critical Shields parameter for the initiation of motion.
Nielsen (1983) suggested a relation of the form

Kps ~ d(y - ic)* (37)

Another equation for ks vas suggested by Raudkivi (1988). It is shown in
Appendix A that the friction factors he derived from the data of Carstens
et al. are open to question. Therefore his equation vill not be analyzed
here. Wilson (1989) suggested an expression of the form

kng ~ dy (38)

that vas based on the results of experiments using steady flow. Although
it vas not clear what shear stress is to be used to calculate the Shields
parameter in this equation, the fact that it corresponds to sheet flow
conditions indicated that the total bed shear stress should be used here.

196. In order to examine the validity of these three equations it is
necessary to have energy dissipation measurements made under conditions of
sheét flov. The only measurements known that approximate these conditions
are five runs from Carstens et al. (1969). These were flat bed ruas
performed at orbital amplitudes much higher than those required for the
spontaneous formation of ripples. This means that a moving layer of sand
mst have been present on the bed.

197. The ratio k, /d obtained from these five runs is plotted against §
in Figure 23 along with the best-fit forms of equations (3€) and (37).
These best-fit forms have mmltiplicative constants of 850 and 360 for
equations (36) and (37), respectively. It is seen from the figure that
equation (37) is the best at matching the trend of the data. Since the
measured friction factor can be used to obtain the total shear stress for
these runs a best-fit coefficient for equation (38) can also be obtained.
This vas found to be 60, which wvas larger than the value of 5 obtained by
Wilson (1989) from steady flow measurements.

198. However, it should be noted that laboratory data on ripple
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Figure 23. The ratio of equivalent roughness due to sediment transport, kps,
to the grain diameter, d, plotted against the Shields parameter,
¥, for the unstable flat bed data of Carstens et al. (1969),
along vith the best fit forms of equations (36) and (37)
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geometry show that sheet flow actually begins after the Shields parameter
exceeds a value of about 0.8. Therefore if these runs had been continued
they would ultimately have resulted in a rippled bed being formed. A final
décision on the validity of these expressions should not be made until data
from the real sheet flow region are available.

199. Thus it appears that the movement of grains on a flat bed can
cause an effective roughness that is more than tvo orders of magnitude
greater than the grain diameter. The effect of grain motion on a rippled
bed can then e accounted for by defining the equivalent roughness as

kn = knf + kns (39)

vhere knf is the roughness due to the bedforms and is quantified by equation
(35). It was attempted to fit the observed values of k, using equation (39)
vith kpg calculated using each of equations (36), (37), and (38).

200. The best fit was obtained when equation (36) with a moditied
coefficient was used to represent the roughness due to grain motion. The
resulting equation is

kn = 497 + 340d(y¥ - 0.7/¥c)? (40)

The value of the relative error was 1.26 for the data from equilibrium
ripples. This is only a small improvement over the value of e when the
grain motion was disregarded due to there being only a few data points in
the region of high shear stress. The coefficient used for the sediment
transport term has been reduced to 340 from the value of 850 that was the
best fit to the flat bed data. This may be because the sediment transport
flat bed runs included some bed form drag as the bed becomes slightly
rippled during those runs.

201. When equation (37) is used to calculate kpg in equation (39) the
resulting best fit has an error of 1.29. The fit is not as good as with
equation (36) because it dies down more slovly at small values of §. It is
necessary for the function used for kpg to be small at low ¢ because it is
only the fit to the data of Carstens et al., which were over a large range
of ¢, that are improved by the inclusion of the sediment tramnsport term.
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The fits to the other data sets were not improved by the addition of this
term as they were mostly at very low values of §.

202. Figure 24 shows the measured values of the friction factor plotted
against Ap/k, vith k, calculated from equation (40). The solid line
represents equation (7). Comparing Figures 21 and 24 it is seen that the
most important difference is that the two points that were above the solid
line in Figure 21 with Apk, around 16 are moved to the left in Figure 24 and
lie closer to the solid line. All the other data points have been shifted
a small distance to the left due to the inclusion of the sediment transport
term in equation (40).

203. Therefore the only significant effect of the sediment tramsport
correction is to account for the two aberrant points in Figure 19. It
should be noted that Figure 19 shows that there are two other data points
in the set of Carstens et al. with the Shields parameter between 0.4 and
0.5 that do not show an increased roughness. This raises the question of
whether the two aberrant points are due to experimental error.

204. Thus both equations (35) and (40) are proposed as predictive
relations to calculate the equivalent roughness of a rippled sand bed.
Equation (36) has the advantage of simplicity and ease of calculation.
Equation (40) includes a correction for the effect of sediment transport
that has some support from the experimental data but is more complicated in
form. The final decision on which equations should be applied is deferred
until they are compared over a range of flow conditions in Part V.
Irregular Waves

205. The only measurements of energy dissipation over a rippled sand
bed by irregular waves are those of Rosengaus (1987) and Mathisen (1989) in
a wvave flume. Before discussing these results it is necessary to define
energy dissipation and the friction factor under an irregular vave motion.
The energy dissipation factor under regular vaves vas defined in equation
(11) vhich relates the bottom velocity to the energy dissipation.

206. In this report irregular waves are considered to be represented by
the root-mean-square wave height, Hms, and the average period. Using these
values along with the flow depth it is possible to calculate a bottom
velocity, uUpmres, that represents the bottom wvave motion. The energy
dissipation that is relevant is the total loss of energy from all
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components of the wvave field that is due to bottom friction. With these
definitions an energy dissipation factor, fems, for irregular vave motion
can be defined by

Eq = %—,'ﬁfemsubnrn’ (41)

vhere Eq is the total energy dissipation.

207. Rosengaus (1987) and Mathisen (1989) measured the energy
dissipation for each of several frequency components they combined to
obtain an irregular wave motion. Thus the total dissipation can be
obtained by summing these values. The value of Hpys is found from the
amplitudes of the components. The value of the representative friction
factor can then be calculated from equation (41).

208. This value together with the representative bottom orbital
amplitude Aprms defined in equation (28) are used to calculate the
equivalent bottom roughness for these experiments. The ratio ky,/7 is
plotted against the Shields parameter, §, for the regular and irregular
vave data of Rosengaus and Mathisen in Figure 24. The representative wave
vas used tc calculate the Shields parameter.

209. Figure 26 shows that the values of k,/f for the irregular waves
are slightly less than those for the regular waves. The best fit value for
this ratio is 2.5 with a relative error of 1.39 for the irregular wave data
vhile it is 3.0 for the regular wave data. Use of k,/7 = 3 for the
irregular wave data results in the relative error increasing to 1.41. This
shows that the relative error is not very sensitive to the constant of
proportionality used due to the scatter of the data.

210. It should be noted here that if the significant wave had been used
as the representative wave the bottom velocity used in equation (41) would
have been greater than upms by a factor of 2. This would have resulted in
the calculated friction factors being reduced by a factor of 22 leading to
equivalent roughnesses that would be much lower than those obtained with
Hras as the representative wave and also much lower than the values obtained
vwith regular vaves. Therefore it is seen that the use of Hys leads to a
scaling of the equivalent bottom roughness that is much closer to that
obtaine? from regular waves than the scaling calculated using the
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significant vave.

211. The objective of this part is to develop a relation between ripple
geometry and the equivalent bottom roughness that would be applicable under
irregular field vaves. Expressions for the equivalent roughness under
regular vaves vere proposed in equations (35) and (40). The data plotted
in Figure 24 are the only data available at present that can be used to
decide whether this relationship is applicable for irregular waves as well.

212. While the best-fit value for k,/7 is smaller for the irregular
vave data the use of the best-fit value for the regular wvave data does not
change the relative error significantly. Therefore, bearing in mind that
both the number of data and the range of y are limited, and considering the
errors involved in predicting the ripple geometry in the field, it seems
reasonable to ignore this difference and consider that the equivalent
roughnesses under the irregular and regular vaves in these experiments are
the same.

213. The best-fit value for the ratio k,/n obtained from the data of
Mathisen and Rosengaus is smaller than the value in equations (35) and
(40). However, the data of Carstens et al. suggest a higher value than
vhat is used in these expressions. These differences can be ascribed to
the differences in experimental technique. Thus, it can be concluded that
these equations are the best relations for the prediction of the equivalent
roughness that can be made using the available measurements of energy
dissipation over a movable bed. It should be kept in mind that these are
based mainly on regular wave data at lov values of § and that their
extension to high values of y and irregular vaves is based on the very
small number of measurements made under these conditionms.
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PART V: EXAMPLE CALCULATIONS AND COMPARISON WITH OTHER RELATIONS

Propesed Models

214. The predictive relations for ripple geometry in the field that
were developed in Part III can be combined vith the expression for the
equivalent roughness proposed in Part IV to calculate the friction factor
that can be expected in the field over a sand bed. The required parameters
are the root-mean-square vave height, the averaged period, the water
temperature, and the sand grain diameter.

216. It was found that the field ripple geometry was well correlated by
‘he parameter X, defined by

e a2

vhere upms is the bottom velocity obtained from the representative wave
that has a height equal to Hpy, the root-mean-square vave height, and a
period equal to the averaged vave period.

216. The ripple height is given by

0.27x-0.5 X<3
—1 = (43)

Boras g 47110 x> 3
vhere Apmms is the orbital amplitude based on the representative wave. This
relationship is observed to exist for the ramge 0.2 < X < 50. The

equivalent roughness k, is then found from either the simple form of
equation (35), i.e.,

kn = 4" (44)
or from the mc 3 complicated form given by equation (40), i.e.,

kn = 47 + 340d(J/§ - 0.7/¥:)3 (46)




vhich includes a correction for the effect of sediment transport. The use
of kp and Apas in equation (7) results in a friction factor that can be
used to predict the .total energy dissipation by the use of equation (41).
a tio

- 217. For example let us consider a wave field with a root-mean-square
height of 1.5 m and an average period of 6 seconds propagating in a water
depth of 10 m over a sand bed that has a diameter of 0.2 mm. The bottom
orbital amplitude is found to 0.44 m from equation (24). Assuming v =
0.01 cm3/s this gives the value of X from equation (42) as 23.0. The ripple
height corresponding to this value of X is 0.9 cm from equation (43).

218. The Shields parameter for these conditions is found to be 0.2b
from equation (15) while the critical Shields parameter is 0.056 from Figure
5. Using these values k, is calculated as 3.6 cm and 4.4 cm from equations
(44) and (45) respectively. The Grant-Madsen friction factor relationship
(equation (7) or Figure 2) is then used to calculate the friction factor.
The values for this case are 0.051 and 0.057 when equations (44) and (45)
are used to calculate the equivalent bottom roughness.

219. This example can also be used to get an idea of how much
uncertainty there will be in the final predicted value of the friction
factor. The relative error in the ripple height prediction was found to be
1.556 in Part III. Thus the calculated ripple height could range from
0.58 cm to 1.4 cm. The friction factors corresponding to these ripple
heights are found to be 0.0414 and 0.065 respectively, when equation (44)
is used. Since the relative error in calculating the friction factor from
the geometry is 1.27 from Part IV, this would result in range of values
from 0.0326 to 0.0826 for the friction factor about the calculated value of
0.0561. This range corresponds to a relative error of around 1.6. Thus we
see that the total relative error is less than the multiple of the two
component errors because the friction factor is not very semnsitive to
errors in the equivalent roughness.

220. For the remainder of this section the prediction of the friction
factor using equations (44) and (46) will be referred to as models 1 and 2,
respectively.
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Qther Exjisting Models

Model 3
221. Grant and Madsen (1982) suggested that the equivalent roughness
for a rippled bed vas given by

Xy = 281,} + 6504d(y¥ ~ 0.7/§c)3 (46)

This equation will also be used to calculate the friction factor with the
geometry obtained from the field relations equations (30) and (31) in order
to see how the results compare with those obtained from equations (44) and
(45) .
Model 4

222. The only previous model proposed for the friction factor under
field conditions was that of Nielsen (1983). He based his formmlation on
the significant vave height and used equation (6) with an upper limit of
0.3 as his friction factor expression. This model calculated k, by the
eqﬁation

K, = silf + 190(§ ~ go)1/3 (47)

The ripple height vas predicted by the relation

{; = 210-1.85 (48)

vhere # is defined by equation (26) and the ripple steepness was calculated
from

3

vith § calculated assuming ki,

223. Equations (48) and (49) for field ripple geometry were put forwvard
by Nielsen (1981) and were based on the significant wave height. However,
vhen considering energy dissipation Nielsen (1983) suggests the

0.342 - 0.34y0-26 (49)

2.5d in equation (6).
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root-mean-square vave height as the equivalent vave height for irregular
vaves. In other words the energy dissipation is calculated from equation
(41) using the friction factor derived from equations (47), (48), (49), and
(6). This means that as far as the energy dissipation is concerned this
friction factor can be compared directly with the value obtained from the
model developed here.
Model 5

224. Another type of predictive relation for the friction factor is a
direct prediction from the wave and sediment parameters, i.e., a prediction
that does not consider the ripple geometry. An example is the equation
proposed by Vongvissesommjai (1987, 1988). He obtained this relation by
fitting it to the data of Carstens et al., and Lofquist (1980) along with
data vhere the friction factor was not measured directly. The result was
the relation

0.16
tu = 0.07792-5(3)" M5,0.0 (50,

Model 6

225. Madsen et al. (1990) obtained a formmla similar to equation (48)
based solely upon their laboratory measurements of energy dissipation under
irregular waves. They used the equivalent bottom orbital velocity and
amplitude defined in equations (18) and (20) to define the equivalent wave
conditions, a method that is different from the root-mean-square wave
approach. However, if the comparison is done for a specified bottom
orbital diameter and period the resulting friction factors will be
comparable as far as energy dissipation and shear stress are concerned.
The equation suggested by Madsen et al. is

fw = 0.29(§/yc)1-5 (61)
vith y calculated from equation (15).
Comparison of Models
226. Thus we have outlined six models that could be used to predict the

87




friction factor in the field. The first three are based on the ripple
geometry as given by equations (30) and (31) vith the equivalent roughness
calculated from equations (44), (45), and (46) respectively. The friction
factor is then found by using equation (7) or from Figure 2.

227. The fourth model is the formulation of Nielsen (1983) with the
geometry calculated using equations (48) and (49), the roughness from
equation (47), and the friction factor from equation (6) with an upper
limit of 0.3. The fifth and sixth models are the direct predictions of
equations (50) and (51). It should be remembered that with the exception
of model 4, which uses the significant wave parameters, all these models
are to be used with the root-mean-square wave parameters.

228. These relations will be compared under conditions for which
ripples are known to exist in the field in order to see how the predictions
behave over a range of conditions. Since the models are formulated in
terms of different non-dimensional parameters it is not possible to plot
all the predicted values against the same non-dimensional variable.
Instead, the comparison will be done for a specific sand grain diameter.

It vas decided to select d = 0.2 mm because this is a typical value seen in
the field.

229. Two further parameters are needed to specify the wave motion.
This will be done by specifying an average period and calculating the
friction factor from each model for a range of values of Apms such that the
value of X is always in the range 0.2 < x < 60. Since the model of Nielsen
(1983) vas formulated using the significant wave height, Apgms vas
mltiplied by 2 before it was used in equations (47)-(49).

230. The parameter X was used to define the limits of the range of Aprys
because it vas the empirical parameter used to correlate the field data.
However, unlike the Shields parameter, it is not a physically significant
parameter in defining the initiation of motion and the disappearance of
ripples. In this calculation the values of Shields parameter corresponding
to X = 0.2 vere found to be as low as 0.018 which was well below the
critical values for the initiation of motion of 0.05 for this particular
grain diameter. Therefore it was decided to set the lower limit of Apms as
the greater of the values corresponding to X = 0.2 and § = 0.5¢,. Similarly
the upper limit of Aprgs vas defined by X = 50 and § = 1.0. For the
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calculations shown here the largest values of § were about 0.6.

231. The results of models 1, 2 and 3 are shown as a plot of friction
factor against Apms for the case with d = 0.2 mm and an average period of 6
seconds in Figure 26. This period is at the lover end of the range
observed in the field. The ripple geometry is calculated from equations
(30) and (31) using the root-mean-square wave height. For this period a
value of Apras = 30 cm means values of the root-mean-square wave height of
0.37 m, 0.68 m, and 6.76 m in wvater depths of 5 m, 10 m, and 30 m,
respectively.

232. The figure shows that the predictions of models 1 and 2 are
identical for small values of Apms. This is because the sediment transport
correction is negligible at low flow intensities. The kink in the curves
corresponds to the value X = 3.6 above vhich a different relation is used
for the ripple geometry. The curve from model 3 is above the other curves
for X < 3.0. This is because the coefficient 28.0 in equation (46) is
slightly higher than the best-fit value of 26.0 obtained in Part IV.
However, once X is greater than 3.0 this curve decreases faster than the
other two curves because equation (46) includes the ripple steepness as
vell as the height, and the steepness decreases with increased X after X >
3.0.

233. At larger values of Apmms the curve from model 1 continues to
decrease due to the continued decrease of the ripple height while the other
tvo curves flatten out as the sediment transport term increases in
importance. It is seen that for flow conditions corresponding to X = 50,
with ¢y = 0.5, the predictions of fy from models 1 and 2 are 0.035 and 0.047,
respectively.

234. Figure 27 shows the predicted curves from the same three models
for the case of d = 0.2 mm and a period of 12 seconds. This period is
chosen from the upper end of the range observed in the field. A value of
Apras = 60 cm is equivalent to vaves with a root-mean-square height of
0.4m, 0.58 m, and 1.28 m in water depths of 6 m, 10 m, and 30 m,
respectively. The behavior of the three curves is similar to the case with
a period of 6 seconds. It is seen that in this case the effect of the
sediment transport term, shown by the difference between the curves from
models 1 and 2, is smaller than before. When X = 50, and the corresponding

89




LEGEND

] _~ Modei 1 5
- Model 2 I
] .~ Model 3

10' - N
] -
102 ) ] ! T T T ' T T | LA | v
0 10 20 30 40 50 60 70
Abrms (cm)

I-‘:l.gure 26. The friction factor, fy, calculated using models 1, 2, and 3,

against Apms for the case with d = 0.2 mm and an average period
of 6 seconds

90




1 N S TR W M NN VAU S SN (S S R
) |
] LEGEND I
4 .~ Model 1 B
) -+ Model 2 !
.»" Model 3
1
10 . N
'4-1; - o
~ B
2
10 —r—T—T T T T T T T T I 1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Figure 27. The friction
against Aprms
of 12 seconds

Aprms (cm)

factor, fw, calculated using models 1, 2, and 3,
for the case with d = 0.2 mm and an average period

91




value of y is 0.41, the predicted values of £, are 0.035 and 0.041 from
models 1 and 2 respectively.

235. Figure 28 shows the results from models 1, 4, 5, and 6 for the
case vith d = 0.2 mm and a period of 6 seconds. The four models show
considerable differences in the predicted friction factors. For most of
the range of Aprgs the curve from model 5, which is based on regular vave
laboratory data, lies above the curves from models 1 and 4, which are based
on field ripple geometry. This is due to the differences in ripple
geometry between the laboratory and the field. At the higher values of
Apms model 5 predicts friction factors that are greater than those
predicted by model 1 by a factor of about 1.9.

236. The curve from the Nielsen model, model 4, begins a little higher
than the curve from model 1 but drops off much more quickly with increasing
Apms. This is because the relation for the ripple height used in this
model, equation (48), causes a more rapid decrease of ripple height with
increasing flow intensity than does equation (43). The curve from model 4
reaches a constant at higher values of Apms. This is because the sediment
transport term in equation (48) yields a constant value of k;/Ap, when Aprms
is high.

237. The curve obtained using model 6 decreases more steeply than all
the other curves. The range of experimental conditions upon which this
equation is based is given by Madsen et al. (1990) as 1.2 < (¢/¥c) < 2.5.

In this case these values correspond to Apms between 17 cm and 28 cm. It
is seen that in this region the values predicted by model 6 are within the
range predicted by the other equations. However, use of this model at
large values of Apms results in predicted friction factors that are much
lover than those predicted by the other models.

238. Figure 29 shows the curves predicted by model 1, 4, 5, and 6 for
the case of d = 0.2 mm and an average period of 12 seconds. It is seen that
the curves behave in a manner similar to the preceding case.

239. Since there are no field data against which to compare these
predictions the figures discussed above do mot give any idea of which
method is the best. The comparison serves to highlight the differences
between the models. Figures 26 and 27 shows that the inclusion of the
sediment transport term in equation (45) resulted in the friction factor
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changing from 0.035 to 0.047 in the most extreme instance. The overall
relative error'in calcula: - the frictior factor from the flow and
sediment parameters was f to be about 1.6 in the example equation.
Therefore it is seen that the difference caused by the sediment transport
term, at the most a factor of 1.35, is considerably smaller than the total
error involved in determining the friction factor. Bearing in mind that
the experimental support of the sediment transport correction is very
limited it seems reasonable to neglect this term at the present time.

240. Figures 28 and 29 show that- a model based on field ripple geometry
can lead to predictions that are signif’ ~antly different from formulations
based entirely on regular and irregu?  a- ' laboratory data. The
predictions are different by a factor of 2 for large values of Aprms.

241. The curves from model 1 and model 4, which are both based on field
geometry, also shov significant differences. The main cause of this is the
difference between the equations used to predict the ripple height. As the
parameter X is found to be superior to 0 in correlating the rippie heights,
equation (43) is probably more reliable than equation (46). The sc¢nations
used to link the ripple geometry to the friction factor will give siailar
results because the model of Nielsen (1983), i.e., model 4, is based on the
data of Carstens et al. (1969) and Lofquist (1980) which were also used in
the present study.

242. Therefore model 1 which has the equivalent roughness calculated by
equation (44), with. the ripple height calculated using equation (43) using
the root-mean-square wave height and the average period, is proposed as a
predictive relation for the equivalent bottom roughness over a movable bed

under field conditions. It is emphasized once again that use of the model
should be limited to the range 0.2 < X < 50.
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PART VI: SUMMARY AND CONCLUSIONS

243. The 4bjective of this study vas to develop a simple, physically
realistic model to predict the friction factor over a movable sand bed
under field conditions. Since reliable field measurements are available
only for the ripple geometry it was found necessary to use laboratory data
in order to formulate some aspects of this model.

244. Laboratory experiments are usually conducted with regular vaves
vhile the vave condition in the field is nearly always irregular. The vave
motion in the field is also at larger scales than are usually obtainable in
the laboratory. Thus it is necessary to investigate how far data from
small-scale, regular wave laboratory experiments are applicable in the
field. To this end recent data from irregular wave laboratory experiments
vere included in- this study.

245. After discussing the various methods of measuring the friction
factor it vas concluded that the only reliable method was through
measurements of the energy dissipation. Analysis.of the data of Lofquist
(1986) showed that the friction factor, fy, defined using the maximum shear
stress in equation (1) was nearly equal to the energy dissipation factor,
fe, defined in equation (11) for rippled sand beds. Therefore it was
decided to assume that fy and f. were equal and to calculate fy, from energy
dissipation measurements using equation (11).

246. It was decided to formulate the model in two stages. The first
step involved deriving predictive relations for the ripple geometry for a
given bottom sediment and a given wave condition. The next step vas to
develop a relationship between the flow, the ripple geometry, and the
resulting friction factor. Combining the two models would lead to the
prediction of the friction factor from the wave and sediment parameters.

Summary of Ripple Geometry Analysis

247. The objective of Part III was to compare the existing data on
ripples from the laboratory and the field in order to determine the
applicability of the laboratory experiments to the field. It was noted
that there were only three sets of data on ripples generated by irregular
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vaves in the laboratory while vaves in the field are almost alvays
irregular.

248. The ripple length was analyzed in detail because it can be
measured in the field with greater reliability than the ripple height.
Furthermore the ripple lengths observed in the laboratory under regular
vaves have a vell-defined relationship to the bottom orbital amplitude.

The analysis showed that this relationship vas quite different for the
field ripples when the parameter D, wvas sufficiently small. It wvas found
that the few data points from ripples formed by irregular vaves in the
laboratory at low values of D, tended to support this conclusion.

249. Thus it vas concluded that the differences between laboratory data
from regular waves and field data were due to scale effects and the
irregularity of the field waves. The data indicated that these differences
vere significant as D, decreased below about 0.2 and the Shields parameter
increased. Since these conditions are the norm for the field it appears
that the present laboratory data cannot be applied to field conditions.

250. This makes it necessary to rely exclusively on field data when
proposing predictive relations for field ripple geometry. HNew relatioms
vere proposed for the ripple length, height, and steepness that were
improvements on the existing ones. The parameter X, defined in equation
(28), was found to correlate the field ripple data well.

261. Previous models for field ripple geometry have been formmlated
using the significant wave height representation of the wave condition.
However, it is seen that the root-mean-square wave height representation is
more relevant to energy dissipation. Furthermore it is found in Part IV
that use of the root-mean-square wave height results in the equivalent
roughness under irregular waves being nearly the same as that under regular
vaves. For these reasons it was decided to base the predictive relations
for a field ripple geometry on the root-mean-square wave height and the
average period.

252. Ripple data have been criticized on the grounds that the observed
ripples may have been caused by different wave conditions from those
recorded. However, the laboratory experiments of Rosengaus (1987) show
that when vaves are run over an initially rippled bed, the final state is
independent of the initial state if the vaves are strong enough to cause
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motion of the sediment. Also the field data of Dingler and Inman (1976)
shov that under strong wave conditions the equilibrium ripples can be
formed in a few dozen cycles. The fact that data from different
investigators correlate provides further evidence of the reliability of the
field data. '

253. Therefore equations (29), (30), and (31) are put forvard as the
most reliable predictive relations for field ripple geometry at the present
time. It should be remembered that these are empirical relations and as

- such are only valid in the range of the original data, i.e., for 0.2 < X <
50.

The Equivalent Roughness

254. In Part IV it was attempted to develop a relation between the
flow, the ripple geometry, and the friction factor. This required
experiments with the simultaneous measurement of the flow, the ripples, and
the energy dissipation. Since such experiments have been done only in the
laboratory this section was restricted to the analysis of laboratory data.

255. Analysis of the fixed bed data of Bagnold (1946) and Sleath (1985)
shoved that for fully rough turbulent flow the equivalent roughness wvas
wvell represented by the simple relations in equations (33) and (34). The
ripple geometries used in these two experiments were thought to represent
tvo extremes between which the geometry of real sand ripples would fall.

256. The analysis of the energy dissipation data over sand ripples
shoved that the simple relations given by equations (33) and (34) were
applicable for the case of a movable bed. The constant of proportionality
obtained fell between the values obtained for the fixed bed data, as would
be expected from consideration of the geometry in these experiments.

257. The fact that the constants were similar for the flow over smooth
field ripples and over sand ripples indicated that most of the flow
resistance seen over sand ripples is due to form drag and not to the skin
friction drag. The relation between the equivaient roughness and the grain
diameter observed by Jonsson (1980b) and Rosengaus (1987) was found to hold
only for equilibrium ripples. Since ripples under irregular field vaves
are not at equilibrium it was decided not to use this correlation. The
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equivalent roughness relation given by equation (35) was found to hold for
both equilibrium and growing ripples.

268. The corrections for the effect of sediment motion suggested by
Grant and Madsen (1982) and Nielsen (1983) vere reviewed. It vas seen that
none of the recently performed experiments were carried out at values of
the Shields parameter that vere high enough to allow the confirmation of
these expressions . Furthermore the steady flow experiments of Wilson
(1989) suggest that this correction is likely to be small. Therefore,
vhile the sediment transport term vas included in equation (40), it was
decided to use both equations (35) and (40) for the comparisons and example
calculations. '

259. There vere only a small number of data, from experiments conducted

at small values of the Shields parameter, in vhich energy dissipation over
a rippled sand bed with irregular waves had been measured. The best-fit
coefficient for equation (35) using these data vas found to be less than
that for the regular wave data from the same apparatus. However, the use
of the value from the regular wave data resulted in a very small change in
the relative error. Therefore it was decided to apply the expressions
derived from regular wave data to the case of irregular waves with no
change in the coefficients.

Comparison of Models

260. The tvo models developed in Parts III and IV were compared with
each other and vith existing models in Part V for a range of conditions
typical of the field. It was found that the largest difterencé caused by
the inclusion of the sediment transport term was small compared to the
overall errors involved in the prediction of the frictiom factor. The
models based on field ripple geometry were found to give results that were
significantly different from the predictions of models based entirely on
laboratory data.

261. Therefore the proposed model for the prediction of the friction
factor in the field is as follows. The wave conditions are represented by
the root-mean-square wave height and the average period. The ripple
geometry is found from
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0.27x90.5 X<3

- (52)
bres o 47x-1.0 X>3

for 0.2 < X < 50.0 with X defined by equation (42). The equivalent
roughness is given by

kn = 47 (53)

and the friction factor is calculated from equation (7) or found from
Figure 2.

262. This model is based primarily on ripple geometry measurements made
in the field and energy dissipation measurements in the laboratory using
regular vaves. The experimental basis of the model would be strengthened
if more energy dissipation measurements are made with irregular waves,
particularly at high values of the shear stress. However, the best way to
check the validity of the model is by a carefully conducted field study

vhere the wave attenuation and bottom ripple geometry are measured
simultaneously.
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APPENDIX A: THE EXPERIMENTAL DATA

1. The experimental data used in this study are tabulated in this
appendix. A blank in any columm indicates that the data vere not reported.
When the vater temperature was not given it was assumed to be 20°C for the
purposes of this report. The derivation of the friction factor and
equivalent vave parameters for some particular data sets are discussed in
detail.

The Data of Carstens et al. (1969)

2. This vas the first data set in vhich the energy dissipation over a
movable bed was measured and these data have been the basis for nearly all
the analyses of the problem. Carstens et al., measured the energy
dissipated in the tunnel by monitoring the air pressure and the water level
in the risers of their vater tunnel. All the tests vere conducted at
approximately the same period with the orbital amplitude being varied.

3. They calculated the energy dissipationm in the tunnel by carrying
out a series of tests with a smooth flat bed. This resulted in a set of
points through which they fit a calibration curve that gave the energy
dissipation and amplitude. The energy dissipation measurements made with a
rippled bed are accompanied by the corresponding smooth bed value that is
obtained from this curve.

4. Let us denote by E4s the total dissipation in the tunnel with a
smooth flat bed. This value is composed of contributions E4; which is the
dissipation due to the curvature of the tunnel and the tunnel walls and E4sp

vhich is the dissipation on the smooth test bed itself. This can be
vritten

Eqs(Ab) = Eq¢(Ab) + Eqgb(Ap) (1.1)

since all these values depend on A,, the orbital amplitude.

6. Similarly the total dissipation with a rippled bed, E4r, can be
written as

Al




Ear(Ap) = Bar(Ap) + Egrp (A.2)

vhere E4rp is the dissipation due to rippled test bed. Subtracting (A.2)
from (A.1) gives Eg4, as

Eqrp(Ab) = Eqr(Ab) - Eas(Ap) + Egsb(Ab) (A.3)

The first quantity on the right-hand side is measured during the rippled
bed run vhile the second is known from the smooth bed curve. Carstens et
al. neglacted the third term as did most investigators, for example Nielsen
(1983), Sleath (1985), and Vongvissesomjai (1987).

6. However, it is possible to estimate the value of this term by
using the friction factor for a smooth bed as given by Figure 1. For example,
for run 31B the reported values of Ej,. and Eyg are 89.4 and 43.6 ft-1bs per
cycle, respectively (121.21 and 62.77 meter-newtons). Ignoring E4q} results in
fo being calculated as 0.07. At this orbital amplitude E4,g is estimated as
4.18 ft-1b (5.67 meter-newtons) per cycle. Using this value changes f, to 0.077,
a difference of 10%. Therefore this method of estimating E4qp was used to
calculate f, for this data set. These values are given in Table A.l.

7. Carstens et al. did not carry out an error analysis of their
results. It can be seen from equation (A.3) that the error in E4rp is
likely to be significant whenever E4; and E4s are comparable in value .

8. For example, in run 21 Edr is 3.53 ft-1b and E g, is given as 2.33 ft-1b,
giving a difference of 1.22. Considering the scatter in the calibration curve for
Egs it can be estimated that the uncertainty in the value of Eg4g is 0.2
which is about 15/ of the calculated difference. This effect decreases
when the amplitude of the flow is large because the difference between E4,
and Eg;s is large. In Figure 19 it vas noted that the greatest scatter in
the values of k,, which are derived from.f., is seen at the lowest flow
intensities.

9. Raudkivi (1988) also attempted to include an estimate of Egsp when
calculating f.. However, it appears that he used a value of E4s, that was
representative of the whole tunnel and not of the smooth test bed. The
result vas that his derived values of f, were too high.
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Table A.i(a)

Wave Tunnel Data on Ripple Geometry and Energy Dissipation
under Regular Waves from Carstens at al. (1969)
d=0.19 m, s = 2.66

Energy
Orbital Radian Vater Ripple Ripple dissipation
amplitude frequency temperature length  height factor

Ay P A ] p
(cm) (s-1) (*C) (cm) (cm)

9.00 1.74 17.2 11.6 2.1 -
11.87 1.75 25.3 16.2 2.6 -
18.16 1.77 26.2 10.9 1.5 0.112
23.70 1.78 24.8 10.6 1.3 0.0914
31.33 1.78 23.9 10.0 0.5 0.0849

8.18 1.717 24.4 10.4 2.1 0.202
11.23 1.77 23.9 - - 0.219
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Table A.1(b)

Wave Tunnel Data on Ripple Geometry and Energy Dissipation
under Regular Waves from Carstens et al. (1969)
d=0.297 ma, s = 2.47

Energy
Orbital Radian Vater Ripple Ripple dissipation
amplitude frequency temperature length  height factor

Ay o A R tg
(cm) (s-1) (‘0 (cm) (cm)

8.92 1.77 26.1 10.6 1.8 0.266
11.99 1.77 24.4 12.7 2.2 0.198
13.66 1.77 23.9 14.5 2.6 0.180
16.37 1.77 25.0 14.5 2.6 0.183
20.86 1.77 22.8 19.4 3.3 0.142
23.39 1.77 22.8 22.1 3.6 0.166
26.11 1.78 22.8 24.5 3.23 0.1656
32.39 1.77 22.8 27.0 3.1 0.115
35.6 1.78 22.2 20.1 2.1 0.106
44.5 1.78 22.2 19.1 0.5 0.077
39.05 1.78 21.9 22.0 1.4 0.0717
28.08 1.77 22.8 24.5 3.2 0.134

8.00 1.76 23.9 10.4 1.9 0.385

8.64 1.83 23.9 10.9 1.7 -

7.35 1.899 23.3 8.8 1.6 -
9.53 1.71 22.8 11.8 2.1 -

7.76 1.66 24.2 10.5 1.8 -

5.97 1.77 21.1 - - 0.342
38.57 1.77 18.3 - - 0.0911
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Table A.1(c)
Wave Tunnel Data on Ripple Geometry and Enor;y Dissipation

under Regular Waves from Carstens et al. (1969)
d =0.586 m, s = 2.66
Energy
Orbital Radian Vater Ripple Ripple dissipation
amplitude frequency temperature length  height factor

Ay Cl A 1 fo
(cm) (s1) ‘0 (cm) (cm)

8.13 1.77 27.2 11.8 2.2 -
10.11 1.76 25.8 14.6 2.8 0.264
12.01 1.77 25.6 16.7 3.3 0.279
13.77 1.77 24.4 18.1 3.4 0.340
16.07 1.77 23.9 20.4 3.9 0.321
18.54 1.78 25.0 23.9 4.5 0.211
19.65 1.761 24.4 25.2 5.2 0.326
22.35 1.77 25.0 29.0 5.8 0.293
24.19 1.77 25.0 25.7 4.8 0.277
24.77 1.78 25.0 26.4 4.9 0.270
26.64 1.78 22.2 30.0 5.6 0.264
29.08 1.77 22.8 26.2 5.0 0.256
30.80 1.76 22.8 30.4 6.0 0.267
32.68 1.77 22.8 39.1 5.6 0.244
35.18 1.78 22.8 37.8 6.8 0.226
37.43 1.77 22.8 35.7 6.2 0.226
39.22 1.81 22.8 46.3 6.9 0.202
42.35 1.77 23.3 44.11 6.9 0.199
12.45 1.78 22.8 17.4 3.1 0.517
12.26 1.76 22.8 - - 0.563
14.12 1.78 24.7 - - 0.215
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The Data of Lofquist (1986)

10. Lofquist measured the energy dissipation in a vave tumnel by means
of pressure taps at either end. With the records from these taps he vas
able to calculate the instantaneous shear stress on the test bed. The
effect of the sidevalls vas accounted for by splitting the tumnmel
longitudinally and having a sand bed on one side and a smooth bed on the
other.

11. The results are presented as curves of the instantaneous friction
factor from the shear stress and also as time averages of the product of
the shear stress and the bottom velocity. This allows the calculation of
the f, and f, values plotted in Figure 3.

12. In order to measure the pressure it was found necessary to have a
sand barrier at either end of the tunnel in the form of a rigid crest. This
crest constrains the profile in the tunnel to an integer number of crests
thereby affecting the spacing. To avoid this problem the flow conditions
used vere such that the resulting ripple length was the same as what vas
observed in tests with no barriers. Some runs were done with the flow
chosen so that the ripple profile was different from the profile observed
in an unconstrained bed in order to see what effect the distortion had on
the energy dissipation.

13. Tests were also carried out with no barriers beginning from an
initially flat bed. The friction factor during various stages of ripple
growth was recorded along with the geometry.

14. All these data are given in Table A.2.

The Data of Rosengaus (1987) and Mathisen (1989)

15. These experiments vere done in a wave flume with the energy
dissipation measured by recording the change in wave height along the
flume. The effects of non-linearity and sidewall friction vere accounted
for by doing preliminary runs with a smooth flat bed, Rosengaus and
Mathisen also conducted experiments with irregular waves. These are the
only experiments reported where energy dissipation in irregular vaves has
been measured.
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Table A4.2(a)

Wave Tumnel Data on Energy Dissipation over librium Ripples
vith Regular Waves from Lofquist (1986)
d=0.18 m, s = 2.66

Energy
Orbital Radian Water Ripple Ripple dissipation
amplitude frequency temperature length  bheight factor
Ap v A 1 fo

(cm) (s1) V) (cm) (cm)

26.9 0.86 - 31.8 3.8 0.126
30.7 0.76 - 36.4 4.1 0.130
29.9 0.63 - 36.4 4.0 0.130
29.3 0.53 - 36.4 4.2 0.150
30.7 0.76 - 36.4 4.0 0.124
33.6 0.89 - 36.0 3.3 0.169
36.7 0.63 - 42.4 4.8 0.110
34.7 0.54 - 42.4 4.9 0.128
39.3 0.76 - 42.2 3.1 0.126
44.3 0.52 - §50.9 6.3 0.140
42.7 0.44 - 50.9 6.7 0.171
48.3 0.62 - 60.9 4.9 0.160
26.9 0.86 - 31.8 4.0 0.127
25.9 0.73 - 31.8 3.9 0.167
29.5 1.01 - 31.0 2.6 0.168
19.6 1.18 - 23.1 3.2 0.189
19.0 1.00 - 23.1 3.4 0.183
14.4 1.61 - 17.0 2.4 0.211
14.0 1.35 - 17.0 2.6 0.223
66.3 0.42 - 66.3 7.0 0.139
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Table A.2(b)

Wave Tunnel Data on Energy Dissipation over librium Ripples
vith Regular Waves from Lofquist (1986)
d=066m, s =2.65

Energy
Orbital Radian Vater Ripple Ripple dissipation
aqlitudo troqnoncy temperature length height factor
Ly A L] 1o
(e (rl) (o)) (¢ ) (cm)
23.9 1.13 - 31.8 7.1 0.285
23.9 1.69 - 31.8 6.8 0.218
23.9 1.38 - 31.8 7.1 0.248
31.9 1.04 - 42.4 8.5 0.265
25.5 1.30 - 31.8 6.7 0.247
22.0 1.61 - 31.8 6.1 0.258
20.6 1.60 - 31.8 6.4 0.211
27.7 1.20 - 34.0 6.9 0.264
17.4 1.56 - 23.1 4.6 0.218
17.4 1.90 - 23.1 4.5 0.269
17.4 2.33 - 23.1 4.4 0.283
17.4 2.33 - 23.1 4.3 0.277
31.9 1.04 - 42.4 8.8 0.289
31.9 0.849 - 42.4 8.2 0.315
23.9 1.69 - 31.8 6.6 0.184
26.9 2.01 - 31.8 5.2 0.181
28.9 2.21 - 31.8 4.8 0.163
23.3 1.42 - 31.8 6.6 0.212
23.3 1.16 - 31.8 6.7 0.271
23.7 1.70 - 31.8 6.3 0.183
25.5 2.04 - 31.8 6.4 0.186
28.9 2.2 - 31.8 5.1 0.142
17.2 1.93 - 23.1 4.6 0.276
17.2 1.67 - 23.1 4.8 0.224
17.6 2.31 - 23.1 4.5 0.257
24.1 1.68 - 31.8 6.4 0.182
25.5 1.59 - 31.8 6.4 0.175
22.0 1.84 - 31.8 6.7 0.164
20.8 1.95 - 31.8 6.1 0.184
27.5 1.47 - 31.8 6.3 0.177
31.9 1.27 - 43.5 8.2 0.283
31.9 1.63 - 39.5 7.9 0.240
38.3 0.71 - 62.2 10.1 0.348
38.3 0.87 - 58.0 11.5 0.351
38.3 1.06 - 68.0 12.0 0.314
31.1 1.68 - 37.3 6.9 0.236
33.9 1.88 - 37.3 6.2 0.199
28.33 1.43 - 37.3 7.3 0.220
27.9 1.18 - 37.3 7.2 0.277
27.5 0.98 - 37.3 7.1 0.273
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Table A.2(b)

cont’d

Energy
Orbital Radian Vater Ripple Ripple dissipation
amplitude frequency temperature length  height factor
Ap v A 9 p

(cm) (s1) o () (cm)

33.92 1.54 - 43.5 8.4 0.216
35.1 1.49 - 43.6 8.2 0.247
38.7 1.65 - 43.5 7.7 0.184
32.3 1.26 - 43.5 8.6 0.2563
31.9 1.03 - 43.5 8.6 0.317
31.9 0.856 - 43.5 7.8 0.346
38.3 0.86 - 2.2 10.3 0.309
38.3 0.70 - 62.2 10.2 0.396
38.7 1.05 - 62.2 10.5 0.281
41.9 1.26 - 52.2 9.8 0.229
46.3 1.38 - 62.2 8.9 0.238
47.9 0.69 - 66.3 12.6 0.330
47.9 0.56 - 65.3 13.5 0.415
48.3 0.84 - 656.3 12.9 0.329
51.9 1.01 - 66.3 12.2 0.248
24.3 1.65 - 28.1 5.8 0.178
24.3 1.35 - 28.9 6.9 0.198
24.3 1.11 - 30.3 6.8 0.236
26.7 1.95 - 30.2 6.5 0.150
29.5 2.17 - 31.2 4.7 0.128
24.3 1.63 - 28.8 5.6 0.191
24.3 1.63 - 29.0 5.9 0.209
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vith Regular Waves from Lofquist (1986)

Table A.2(c)
Wave Tunnel Data on Energy Dissipation over Growing Ripples

d=0.18m, s = 2.66

Energy

Orbital Radian VWater Ripple Ripple dissipation

amplitude <frequency temperature length  height factor
Ap v A 1 p £
(cw (s1) (°C) (cw) (cm)

. 3007 0076 - 2500 2.8 00120
30.7 0.76 - 26.0 2.9 0.138
30.7 0.76 - 26.7 3.1 0.106

Table A.2(d)

VWave Tunnel Data on Energy Dissipation over Growing Ripples

vith Regular Waves from Lofquist (1986)

d=0.55m, s =2.65
Energy
Orbital Radian Vater Ripple Ripple dissipation
amplitude frequency temperature length  height factor
(cm) (s D) (°C) (cm) (cm)
24.3 1.63 - 10.3 0.76 0.0679
24.3 1.63 - 24.0 4.0 0.147
24.3 1.63 - 25.7 5.0 0.177
30.3 1.32 - 14.6 1.75 0.0983
30.3 1.32 - 24.2 3.7 0.163
30.3 1.32 - 32.0 6.3 0.216
30.3 1.32 - 45.0 7.0 0.246
17.6 2.32 - 8.0 0.65 0.0789
17.6 2.32 - 13.8 2.4 0.168
17.6 2.32 - 21.3 3.9 0.226
38.7 1.05 - 7.6 0.3 0.0393
38.7 . 1.05 - 12.6 1.4 0.0483
38.7 1.06 - 16.8 1.7 0.0811
38.7 1.05 - 21.3 2.8 0.123
38.7 1.05 - 36.0 6.5 0.168
38.7 1.05 - 356.0 $.0 0.188
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'16. As a first step tovards a random wave motion Rosengaus (1987) used
tvo vaves of different frequency vhich vhen superimposed gave rise to an
amplitude-modulated carrier wave. The energy decrease along the flume was
measured for each component separately by transforming the observed surface
displacement to a frequency spectrum. The errors that arose due to the
transfer of energy among the component vaves were accounted for by
conducting runs with a smooth flat bed.

17. A full spectrum vas then simmlated by increasing the number of
component vaves--ten in the case of Rosengaus and five in the case of
Mathisen. The amplitude of each of the components, which were at different
frequencies, was adjusted to obtain the required spectral shape.

18. The analysis in this report used an equivalent surface wave with
the root-mean-square height and the average period. The root-mean-square
height vas taken to be the root mean square of the heights of the component
vaves. For the wave group experiments the average period was taken as the
carrier vave period while for the spectral waves the average period was
taken to be 0.956 of the period of the spectral peak as recommended by Goda
(1985). The total energy dissipation was obtained by summing the measured
dissipation for each component. |

19. The derived values are given in Tables A.4 and A.S.

The Data of Sato (1988)

20. Sato (1988) studied ripple geometry created by regular and
irregular vaves in a wave tunnel. The irregular vave motion was created as
follows. First a realization of the surface displacement was generated
based on the Brechtschneider-Mitsuyasu spectrum. Linear wave theory vas
used to convert this into a time history of the bottom velocity which was
s3imulated in the wave tunnel.

21. The spectrum that was used to generate the surface signal vas
specified by means of a significant wvave height and a significant wave
period. Therefore the equivalent wave condition needed for this report vas
obtained by dividing the significant height by y2 to obtain Hrys and by
taking the average period to be equal to the significant wave period.

The values obtained in this way are given in Tables A.6 and A.7.
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Table A.3(a)

Vave Flume Data on Ripple Geometry and Energy Dissipation
under Regular Waves from Mathisen (1989) and Rosengaus (1987)
d=0.12m, s = 2.66

Energy
Oxrbital Radian Water Ripple Ripple dissipation
amplitude frequency temperature length  height factor
Ay v A 1 93
(cm) (s-) ) (cm) (cm)
4.61 2.39 - 6.6 1.2 0.193
6.44 2.39 - 8.1 1.3 0.190
8.00 2.39 - 8.8 1.2 0.107
9.39 2.39 - 9.2 1.3 0.094
10.3 2.39 - 9.0 1.2 0.084
7.16 2.39 - 8.9 1.3 0.178
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Table A.3(b)

Wave Flume Data on Ripple Geometry and Energy Dissipation
under Regular Waves from Mathisen (1989). and Rosengaus (1987)
d=0.2mm, s =2.656

Energy
Orbital Radian Water Ripple Ripple dissipation
amplitude <frequency temperature length height factor

Ap [ A 1 T
(cm) (s D) C) (cm) (cm)

5.52 2.39 - - - 0.272
6.94 2.39 - - - 0.171
8.56 2.39 - - - 0.176
10.42 2.39 - - - 0.166
11.73 2.39 - - - 0.149
12.59 2.39 - - - 0.111
14.04 2.39 - - - 0.110
9.42 2.39 - - - 0.174
9.08 2.39 - 9.9 1.6 0.173
5.56 2.39 - 7.4 1.3 0.243
7.23 2.39 - 8.9 1.5 0.223
12.05 2.39 - 10.6 1.6 0.180
6.07 2.90 - 8.6 1.3 0.165
9.16 2.03 - 10.2 1.6 0.113
6.43 2.62 - 8.7 1.4 0.187
9.27 2.39 - 10.9 1.7 0.177
9.01 2.39 - 10.1 1.6 0.1566
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Table A.4(a)

Vave Flume Data on Ripple Geometry and Energy Dissipation
under Irregular Waves from Mathisen (1989) and Rosengaus (1987)

d=0.12mm, s = 2.65

Energy
Orbital Radian Water Ripple Ripple dissipation
amplitude frequency temperature length  height factor
(cm) (s ) (°C) (cm) (cm)
6.43 2.51 - 8.2 1.1 0.0981
6.50 2.51 - 7.9 1.1 0.0840
6.86 2.51 - 9.4 1.1 0.0772
6.93 2.51 - 9.1 1.1 0.0950
5.76 2.51 - 7.7 1.2 0.116
6.48 2.51 - 8.3 1.0 0.122
6.56 2.51 - 8.7 1.1 0.159
5.42 2.51 - 7.6 1.2 0.271
6.95 2.51 - 8.2 1.0 0.166
7.21 2.51 - - - 0.159
6.04 2.51 - - - 0.197
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Table A.4(b)

Wave Flume Data on Ripple Geometry and Energy Dissipation
under Ragular Waves from Mathisen (1989) and Rosengaus (1987)
d=0.2m, s = 2.65

Enexgy
Orbital Radian Vater Ripple Ripple dissipation
amplitude frequency temperature length  height factor
dp v A 1 p
(cm) (s-1) (‘0 (cm) (cm)
4.51 2.51 - - - 0.268
4.75 2.51 - 1.7 1.1 0.196
8.10 2.51 - 8.6 1.0 0.0567
6.91 2.61 - - - 0.104
65.24 2.51 - 8.5 1.2 0.205
5.53 2.51 - 8.2 1.5 0.166
5.28 .2.51 - 8.0 1.4 0.214 -
5.563 2.51 - 8.2 1.4 0.174
6.32 2.39 - - - 0.183
6.21 2.39 - - - 0.467
6.69 2.39 - 8.7 1.6 0.272
5.31 2.39 - 9.1 1.5 0.225
5.73 2.39 - 9.1 1.6 0.144
- 6.07 2.39 - 8.5 1.4 0.238
5.49 2.39 - 8.6 1.6 0.190
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Wave Tumnel Data on Ripple Geometry under Regular Waves from Sato (1988)
d =0.18, s = 2.66 (fb: flat bed)

|

Table A.65(a)

Orbital Radian Water Ripple Ripple
amplitude frequency temperature length  height
Ap v A n
(cm) (s1) 9] (cm) (cm)
6.37 6.28 - 6.6 0.7
7.96 6.28 - 7.3 0.8
9.56 6.28 - b b
19.1 2.09 - 8.8 1.2
23.9 2.09 - 12.2 1.34
28.7 2.09 - 9.8 1.0
31.8 1.26 - 9.1 1.6
39.8 1.26 - 12.9 1.9
44.5 0.90 - 10.6 1.5
55.7 0.90 - 19.5 3.1
66.8 0.90 - 12.8 1.4
78.0 0.90 - b b
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Table A.5(Db)

Wave Tumnnel Data on Ripple Geometry under Regular Waves from Sato (1988)
d = 0.56, s = 2.66 (fb: flat bed)

Orbital Radian Water Ripple Ripple
amplitude frequency temperature length  height
Ap v A n
(cm) (s-1) “c) (cm) (cm)
19.1 4.19 - 18.6 2.6
23.9 4.19 - b b
38.2 2.09 - 31.4 6.6
47.8 2.09 - 35.5 6.7
52.5 2.09 - 29.3 2.9
57.3 2.09 - b 4 b
63.7 1.26 - 33.8 4.7
79.6 1.26 - 26.5 2.2
87.5 1.26 - 43.6 5.3
95.5 1.26 - o b 4]
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Table A.6(a)

Wave Tunnel Data on Ripple Geometry under Irregular Waves from Sato (1988)
d=0.18, s = 2,656 (fb: flat bed)

Orbital Radian " Water Ripple Ripple
amplitude frequency temperature length  height
Ay v A I
(cm) (s-) o (cw) (cm)
13.8 2.094 - 9.1 1.1
17.6 2.094 - 10.0 0.7
20.7 2.094 - 9.8 0.7
24.9 2.094 - 8.4 0.5
13.1 2.094 - 9.7 1.2
17.7 2.094 - 10.9 1.1
19.8 2.094 - 8.1 0.5
23.2 2.094 - 8.1 0.4
6.8 2.094 - 8.8 1.4
8.7 2.094 - 10.7 1.5
10.0 2.094 - 9.6 0.7
11.6 2.094 - 4] b
23.2 1.257 - 9.9 0.9
28.8 1.267 - 7.3 0.4
34.6 1.257 - b b
22.6 1.267 - 8.4 1.0
28.0 1.2567 - 7.8 0.5
33.6 1.257 - fb b 4 )
10.4 1.267 - 1.7 0.6
13.2 1.257 - 7.4 0.4
15.9 1.257 - 4] b
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Wave Tunnel Data on Ripple Geometry

Table A.6(b)

under Irregular

Vaves from Sato (1988)

d =0.66, s = 2.66 (fb: flat bed)

Orbital Radian Vatexr Ripple Ripple

amplitude frequency temperature lcggth height
Ay (] L
(cm (s) (*C) (cw) (cm)
14.7 4.189 - 16.8 1.6
18.4 4.189 - 16.1 1.1
20.2 4.189 - b 4] p 4
7.2 4.189 - 17.5 1.8
9.0 4.189 - 18.6 2.2
9.9 4.189 - b b
28.2 2.094 - 27.5 3.3
35.1 2.094 - 356.0 2.7
38.6 2.094 - 4 ] b
14.7 2.094 - 32.6 4.9
17.6 2.094 - 31.4 3.1
18.5 2.094 - 26.4 2.5
20.1 2.094 - b4 ] 0

A19




Table A.7

Oscillating Bed Data on Energy Dissipation over Fixed Ripples
vith Regular Waves from Bagnold (1946)

Energy
Orbital Radian Vater Ripple Ripple dissipation
amplitude frequency temperature length  height factor
Ay v A 9 p
(cw) (s1) ' o) (cm (cm)
6.0 3.13 - 10.0 1.6 0.208
6.0 3.88 - 10.0 1.6 0.264
6.0 6.86 - 10.0 1.6 0.300
6.0 8.20 - 10.0 1.6 0.266
6.0 9.66 - 10.0 1.6 0.245
10.0 1.24 - 10.0 1.6 0.233
10.0 1.38 - 10.0 1.6 0.246
10.0 1.79 - 10.0 1.6 0.224
10.0 1.94 - 10.0 1.6 0.223
10.0 2.64 - 10.0 1.5 0.237
10.0 2.66 - 10.0 1.6 0.196
10.0 3.76 - 10.0 1.6 0.237
10.0 5.72 - 10.0 1.6 0.208
16.26 1.23 - 10.0 1.6 0.139
16.26 1.61 - 10.0 1.6 0.146
16.26 1.64 - 10.0 1.6 0.164
16.26 2.57 - 10.0 1.6 0.138
16.26 2.59 - 10.0 1.6 0.150
16.26 2.86 - 10.0 1.6 0.164
16.26 3.20 - 10.0 1.5 0.144
16.25 3.66 - 10.0 1.6 0.1565
16.25 4.21 - 10.0 1.5 0.137
20.3 0.814 - 10.0 1.6 0.115
20.3 1.12 - 10.0 1.5 0.126
20.3 1.67 - 10.0 1.6 0.134
20.3 2.48 - 10.0 1.6 0.132
20.3 2.568 - 10.0 1.6 0.162
30.5 0.671 - 10.0 1.6 0.096
30.5 1.07 - 10.0 1.5 0.088
30.5 1.36 - 10.0 1.6 0.091
30.5 1.66 - 10.0 1.6 0.083
30.5 1.78 - 10.0 1.5 0.092
5.0 2.38 - 20.0 3.0 0.294
6.0 3.51 - 20.0 3.0 0.244
5.0 5.73 - 20.0 3.0 0.232
5.0 7.62 - 20.0 3.0 0.267
5.0 8.48 - 20.0 3.0 0.283
10.0 1.34 - 20.0 3.0 0.231
10.0 2.20 - 20.0 3.0 0.261
10.0 3.41 - 20.0 3.0 0.219
10.0 3.64 - 20.0 3.0 0.217
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Table A.7

cont’d
Energy
Orbital Radian Water Ripple Ripple dissipation
amplitude frequency temperature length  height factor
Ap v A 1 7%

(cm) (s-) o (cm) (cm)
10.0 4.01 - 20.0 3.0 0.265
10.0 5.17 - 20.0 3.0 0.196
16.26 0.762 - 20.0 3.0 0.262
16.26 1.17 - 20.0 3.0 0.223
16.26 1.67 - 20.0 3.0 0.229
16.26 2.15 - 20.0 3.0 0.247
16.26 2.77 - 20.0 3.0 0.189
16.25 3.07 - 20.0 3.0 0.199
20.3 1.16 - 20.0 3.0 0.199
20.3 1.49 - 20.0 3.0 0.224
20.3 1.73 - 20.0 3.0 0.214
20.3 1.90 - 20.0 3.0 0.211
20.3 2.30 - 20.0 3.0 0.178
30.5 0.561 - 20.0 3.0 0.130
30.5 0.769 - 20.0 3.0 0.139
30.5 0.919 - 20.0 3.0 0.146
30.5 1.07 - 20.0 3.0 0.143
30.5 1.20 - 20.0 3.0 0.163
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Table A.8

Oscillating Bed Data on Energy Dissipation over Fixed Ripples

vith Regular Waves from Sleath (1985)

Energy

dissipation

factor
7Y

Ripple
height
L

Ripple
A

1

Hater
tesperature

v
(s-1)

Radian

Ay

Orbital
(cm)

c)

amplitude <frequency

(cm)

(cm)

11111111111111111111111111111111111111111

33333333333333333333333333333333333333333

77777777.777777777777777777777777777777777

38

N WM
PR PR EFERE T EEEELE LR AR I L L PR SR

A22




Table A.8

(cont’d)
. Enexgy
Oxbital Radian Vater Ripple Ripple dissipation
amplitude frequency temperature length  height factor
Ay v A L T
(cw) (s) 0 (cw (cm)
16.4 1.713 - 7.3 1.7 0.113
16.4 2.08 - 7.3 1.7 0.118
16.4 2.70 - 7.3 1.7 0.126
16.4 2.70 - 7.3 1.7 0.118
16.4 3.31 - 7.3 1.7 0.116
16.4 3.83 - 7.3 1.7 0.112
20.5 0.346 - 7.3 1.7 0.040
20.5 0.513 - 7.3 1.7 0.0561
20.5 0.745 - 7.3 1.7 0.083
20.5 1.18 - 7.3 1.7 0.0917
20.5 1.50 - 7.3 1.7 0.0932
20.6 1.91 - 7.3 1.7 0.103
20.6 - 2.43 - 7.3 1.7 0.106
20.5 2.81 - 7.3 1.7 0.103
30.8 0.37 - 7.3 1.7 0.0466
30.8 0.727 - 7.3 1.7 0.0624
30.8 0.922 - 7.3 1.7 0.0676
30.8 1.23 - 7.3 1.7 0.0747
. 30.8 1.76 - 7.3 1.7 0.0736
30.8 2.19 - 7.3 1.7 0.0823
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Table A.9
Field Data on Vave-Formed Ripple Geometry from Inman (1967)

(fb: flat bed)
Grain Orbital Radian Vatex Ripple Ripple
diameter amplitude frequency temperature length  height
d & v A 1
(cm) (cm) (s-1) o) (cm) (cm)
0.0118 65.0 0.628 - 6.8 0.46
0.0153 29.1 0.898 - 7.3 1.0
0.0145 20.5 0.785 - 8.8 1.2
0.015 43.1 0.849 - 7.0 0.6
0.0162 22.6 0.628 - 7.9 1.2
0.0151 39.9 0.542 - 7.9 0.6
0.0147 69.3 0.628 - 6.4 0.6
0.0157 61.4 0.571 - 7.9 0.6
0.0137 4.1 0.628 - 7.6 0.6
0.0124 33.4 0.683 - 7.3 0.9
0.0117 20.5 0.785 - 8.6 1.2
0.012 20.5 1.047 - 9.1 1.6
0.0117 11.9 1.013 - 11.9 1.8
0.0118 44.2 0.731 - 6.7 0.6
0.0124 23.7 0.648 - 9.1 0.9
0.0129 21.6 0.628 - 8.8 1.4
0.0126 31.3 0.622 - 7.6 0.8
0.0118 26.9 0.661 - 7.0 0.6
0.0114 65.0 0.571 - 7.6 0.6
0.0117 63.6 0.483 - 7.0 0.6
0.0135 10.8 0.785 - 18.6 2.3
0.0127 6.6 1.257 - 9.4 1.2
0.0115 10.8 0.786 - 18.9 2.4
0.0106 - 7.5 0.966 - 11.9 1.6
0.0107 4.3 1.047 - 10.0 1.8
0.0102 35.6 0.604 - 7.6 0.5
0.0102 25.9 0.739 - 7.9 0.7
0.0102 41.0 0.483 - 7.9 0.9
0.0106 14.0 0.661 - 16.1 1.6
0.0103 4.3 1.257 - 11.3 1.8
0.0109 10.8 0.483 - 11.9 1.8
0.0106 32.3 0.483 - 7.9 1.4
0.0106 24.8 0.628 - 14.9 1.6
0.0109 16.2 0.524 - 12.5 1.8
0.0113 22.6 0.524 - 11.6 1.6
0.0081 5.4 0.698 - 10.0 1.7
0.06565 44.2 0.698 - 67.3 9.1
0.0483 26.9 0.698 - 63.9 9.1
0.0635 97.0 0.419 - 85.3 16.2
0.0266 44.2 0.648 - 36.6 4.6
0.0302 26.9 0.610 - 46.3 6.7
0.0418 30.2 0.628 - 71.0 11.2
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Table A.9

(cont’d)
Grain Orbital Radian Vater Ripple  Ripple
diameter amplitude frequency  temperature length  height
d Ap v A 1
(cw (cm) (s) C) (cm) (cm)
0.0408 31.3 0.483 - 70.7 10.7
0.0412 37.7 0.524 - 81.4 12.6
0. MM06 32.3 0.571 - 7.7 13.4
0.0406 32.3. 0.571 - 80.5 12.8
0.0466 28.0 0.524 - 80.8 13.7
0.0345 33.4 0.571 - 79.2 12.2
0.0448 31.3 0.648 - 91.4 14.6
0.0462 23.7 0.610 - 91.4 14.6
0.0423 24.8 0.571 - .1 11.9
0.043 34.5 0.524 - 82.9 13.4
0.0467 23.7 0.628 - 53.3 7.6
0.0103 109.9 0.393 - b 4
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Table A.10
Field Data on Vave-Formed Ripple Geometry from Miller and Komar (1980)

Grain Orbital Radian Vater Ripple Ripple

diameter amplitude frequency temperature length  height
d Ap v A _n__
(cm) (cm) (s1) (°C) (cm) (cm)
0.0165 89.2 0.722 10.0 22.4 -
0.0166 73.1 0.346 10.0 22.4 -
0.0166 178.6 0.628 10.0 9.4 -
0.01656 68.5 0.764 10.0 9.7 -
0.0166 132.7 0.440 10.0 16.6 -
0.0166 65.9 0.440 10.0 9.7 -
0.0166 47.8 0.722 10.0 18.1 -
0.0165 107.0 0.377 10.0 18.1 -
0.0166 . 6.8 0.786 10.0 25.1 -
0.0166 43.6 0.409 10.0 25.1 -
0.0165 14.3 0.785 10.0 22.4 -
0.0166 72.1 0.409 10.0 22.4 -
0.0165 61.5 0.785 10.0 7.8 -
0.0166 69.6 0.660 10.0 8.2 -
0.0165 98.6 0.471 10.0 8.4 -
- 0.0165 68.0 0.698 10.0 10.2 -
0.0165 60.6 0.598 10.0 1.7 -
- 0.0165 80.2 0.518 10.0 8.6 -
0.0165 90.7 0.542 10.0 8.1 -
0.0165 48.6 0.542 10.0 8.6 -
0.0166 30.0 0.849 10.0 8.3 -
0.0166 40.7 0.597 10.0 8.3 -
0.0165 61.9 0.377 10.0 8.3 -
0.0166 42.8 0.660 10.0 7.6 -
0.0166 32.0 0.660 10.0 8.2 -
0.0166 6.3 0.88 10.0 22.2 -
0.0165 31.1 0.409 10.0 22.2 -
0.0165 16.2 0.691 10.0 17.6 -
0.0165 34.1 0.628 10.0 14.9 -
0.0165 63.2 0.377 10.0 14.9 -
0.0287 10.3 1.047 20.0 22.3 -
0.0287 21.0 0.810 20.0 26.9 -
0.0287 12.4 0.754 20.0 27.1 -
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Table A.11
Field Data on Wave-Formed Ripple Geometry from Nielsen (1984)

(fb: flat bed)
Grain Orbital Radian Water Ripple Ripple
diameter amplitude frequency temperature length  height
d Ap v A _n__
(cm) (cm) (s) o (cw) (cm)
0.049 50.7 0.748 26.0 60.0 5.0
0.06 47.0 0.8856 26.0 60.0 16.0
0.06 60.4 0.838 26.0 60.0 16.0
0.06 50.3 0.827 26.0 50.0 15.0
0.0256 41.3 0.873 26.0 b 4] b 4
0.016 67.8 0.739 25.0 b4 b
0.023 93.8 0.582 26.0 o b {
0.017 124.5 0.487 26.0 b 4] b 4]
0.011 39.8 0.885 26.0 5.0 0.5
0.012 31.3 0.885 26.0 b 4 b
0.033 68.6 0.806 20.0 70.0 7.5
0.033 69.9 0.706 20.0 70.0 7.6
0.03 47.7 0.766 20.0 656.0 7.5
0.03 64.1 0.698 26.0 65.0 7.5
0.04 68.6 0.766 20.0 80.0 '10.0
0.04 70.9 0.748 20.0 60.0 8.0
0.04 60.8 0.806 20.0 60.0 8.0
0.017 91.7 0.766 21.0 4 ) b
0.016 66.4 0.731 21.0 4 - b
0.016 78.1 0.598 21.0 b4 b
0.02 56.5 0.795 21.0 o b
0.016 86.0 0.661 21.0 4] o
0.044 58.1 0.628 22.0 656.0 6.7
0.062 137.5 0.524 22.0 66.0 5.7
0.051 94.6 0.598 22.0 48.0 4.3
0.045 63.6 0.668 22.0 48.0 4.3
0.038 116.1 0.487 16.0 50.0 8.0
0.038 101.4 0.499 16.0 50.0 9.0
0.045 88.8 0.56. 16.0 35.0 7.0
0.044 61.5 1.102 16.0 50.0 8.0
0.048 69.2 0.885 16.0 60.0 8.0
0.049 70.7 0.816 16.0 60.0 8.0
0.047 93.3 0.666 16.0 60.0 8.0
0.047 113.6 0.616 16.0 60.0 8.0
0.047 70.9 0.683 - 16.0 60.0 7.5
0.047 49.9 0.873 16.0 60.0 7.5
0.045 43.6 1.013 16.0 . 66.0 10.0
0.045 45.2 1.030 16.0 66.0 10.0
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Table A.12

Wave Tunnel Data on Ripple Geometry under Regular Waves
from Mogridge and Kamphuis (1972)
d=0.36, s = 2.66

Orbital Radian Vater Ripple Ripple

amplitude frequency temperature length  height

Ay v A _n_
(cm) (s) oY) (cm) (cm)
77.6 0.781 17.8 42.7 7.0
9.41 2.50 17.2 12.9 2.1
16.7 1.56 17.2 19.7 3.3
15.6 1.566 17.8 20.0 3.4
25.8 1.56 17.8 28.1 4.8
21.8 1.11 17.8 28.4 4.8
29.4 1.11 17.8 37.7 5.8
32.0 1.56 17.8 33.8 5.1
36.0 0.781 17.8 44.3 6.8
42.8 0.781 17.8 60.0 8.8
61.9 0.781 17.8 54.8 9.5
83.7 0.625 17.8 60.1 10.1
60.9 0.521 17.8 65.0 10.4
66.8 0.521 17.8 73.5 11.5
75.4 0.447 18.3 81.2 13.6
93.0 0.447 18.3 101.7 18.4
13.5 1.56 17.8 17.2 3.0
21.1 1.56 17.8 25.0 3.8
29.7 1.56 17.8 33.0 4.6
38.0 1.56 17.8 27.8 4.9
43.9 1.56 17.8 22.7 3.9

A28




Table A.13

Wave Flume Data on Ripple Geometry under Regular Waves

d=0.36, s =2.66

from Mogridge and Kamphuis (1972)
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Table A.13

(cont’d)

Orbital Radian Vater Ripple Ripple
amplitude <frequency temperature length  height
by v A N

(cm) (s-1) o (cm) (cw)
3.19 5.78 21.9 3.8 0.68
2.80 5.77 21.7 3.4 0.52
3.76 6.77 21.9 4.6 0.70
3.88 6.77 22.2 5.0 0.75
3.48 6.79 22.5 4.3 0.65
4.04 5.80 21.7 4.9 0.72
3.11 5.77 21.7 3.7 0.58
2.69 6.77 21.7 3.5 0.49
3.89 65.77 21.7 4.8 0.67
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Table A.14(a)

Wave Tunnel Data on Ripple Geometry under Regular Waves
from Lofquist (1978)
d=0.18 mm, 3 = 2.66

Orbital Radian Vater Ripple  Ripple
amplitude frequency  temperature length  height
Ay ) A ]
(cm) (s) o (cm) (cm)
11.4 2.11 - -14.0 2.0
11.4 1.92 - 14.0 1.7
11.4 2.32 - 13.3 1.8
9.27 2.29 - 11.4 1.6
18.3 1.14 - 21.0 2.8
27.5 0.83 - 26.8 3.3
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Table A.14(b)

Wave Tunnel Data on Ripple Geometry under Regular Waves

from Lofquist (1978)
d=0.56m, s =2.66
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Orbital
amplitude

(cm)
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°C)

(s-1)
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559“5630693534413877333
o WO CN DD vt vl vl vl vt O v N vt OV CN v vt ot

A32




Table A.165(a)

Vave Flume Data on Ripple Geometry under Regular Waves
from Nielsen (1979)
d = 0.082 mm, s = 2.66

Orbital Radian Water Ripple Ripple
amplitude frequency  temperature length  height
Ap v : A 1
(cm) (s) (‘0 (cm) (cm)
1.19 6.28 - 2.9 0.6
1.39 6.28 - 2.9 0.5
1.46 6.28 - 2.0 0.5
1.89 - 6.28 - 2.9 0.5
1.78 6.28 - 2.9 0.4
2.09 6.28 - 3.0 0.5
2.52 -6.28 - 3.0 0.6
2.89 6.28 - 3.0 0.45
3.17 6.28 - 3.4 0.6
3.48 6.28 - 3.6 0.6
2.68 3.70 - 4.3 0.7
2.98 3.70 - 4.4 0.8
3.38 3.70 - 4.7 0.8
3.93 3.70 - 5.0 0.8
4.60 3.70 - 5.6 0.8
5.21 3.70 - 5.9 0.9
5.92 3.70 - 5.27 0.7
6.60 3.70 - 6.0 0.75
7.16 3.70 - 5.6 0.6
8.25 3.70 - 5.7 0.8
8.82 3.70 - 5.6 0.6
9.45 3.70 - 5.3 0.5
10.25 3.70 - 5.2 0.65
11.03 3.70 - 4.9 0.55
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Table A.15(b)

Vave Flume Data on Ripple Geometry under Regular Vaves

from Nielsen (1979)
d=0.17 mm, s = 2.65

Orbital Radian Vater Ripple Ripple
amplitude frequency temperature length  height
Ap v A 1
(cm) (s-1) 0 (cm) (cw)
3.13 3.70 - 4.5 0.8
4.64 3.70 - 6.6 0.9
6.97 3.70 - 6.7 1.15
6.92 3.70 - 7.5 1.25
7.90 3.70 - 8.7 1.3
8.66 3.70 - 8.5 1.2
9.36 3.70 - 7.4 1.2
10.47 3.70 - 7.4 1.0
12.76 3.70 - 8.8 1.2
- 13.10 3.70 - 9.4 1.3




Table A.16(c)

Wave Flume Data on Ripple Geometry under Regular Waves
from Nielsen (1979)
d=0.36mm, s =2.65

Orbital Radian Water Ripple Ripple

amplitude frequency temperature length  height
Ay Y A [
(cm) (s1) °C) (cm) (cm)
4.06 3.70 - 5.7 0.96
4.47 3.70 - 6.3 1.0
5.00 3.70 - 7.1 1.0
6.40 3.70 - 8.6 1.4
7.52 3.70 - 9.6 1.56
9.22 3.70 - 11.9 1.8
10.5 3.70 - 12.8 1.9
11.29 3.70 - 13.4 2.2
12.4 3.70 - 13.8 1.9
14.0 3.70 - 13.3 1.9
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Table A.16(a)

Vave Tunnel Data on Ripple Geomstry under Regular Waves
from Lambie (1984)
d=0.09m, s =2.66

Orbital Radian Vater Ripple Ripple
amplitude frequency temperature length  height
Ay v A _n__
(cm) (s°1) (‘0 (cw) (cm)
11.0 1.09 66.2 11.6 1.45
39.0 1.09 60.2 66.0 3.5
14.5 1.06 64.0 12.4 1.8
8.0 2.73 62.2 7.6 1.4
20.25 1.14 69.0 21.2 1.8
21.0 1.14 66.0 16.6 2.1
13.0 1.40 65.0 14.0 2.0
10.5 2.00 64.4 10.5 1.6
8.5 2.17 69.6 11.0 2.1
10.5 2.17 69.6 10.6 1.3
19.5 2.17 67.2 6.5 2.0
7.7 2.73 62.3 6.6 1.2
11.25 2.73 54.0 8.0 1.2
9.0 2.73 62.4 7.6 1.2
17.5 1.40 65.0 18.0 2.7
14.5 2.00 60.0 8.3 2.3
59.5 1.09 67.0 4] 4]
65.0 1.09 67.0 b 4] b 4 ]
80.5 0.84 48.4 4. 4 ]




Table A.16(b)

Wave Tunnel Data on Ripple Geometry under Regular Waves
from Lambie (1984)
d=0.16 =m, s = 2.66

Orbital Radian Vater Ripple Ripple
amplitude <frequency temperature length  height
Ap v A 1
(cm) (s-1) () (cw) (cm)
19.76 1.34 66.5 18.2 2.9
19.76 1.34 56.0 23.0 33
6.76 2.24 59.0 11.5 2.1
10.26 2.24 60.0 12.5 2.3
11.76 2.31 60.5 13.2 2.2
21.75 1.63 64.5 25.3 3.2
19.25 1.64 60.5 20.3 4.0
16.75 1.64 68.7 18.5 3.3
13.9 1.64 63.5 16.3 2.8
10.15 1.63 60.0 11.5 1.8
16.5 1.06 66.0 17.2 2.8
25.5 1.63 62.5 22.2 4.1
24.0 1.62 70.0 20.4 4.0
39.4 1.19 68.5 - 33.0 3.9
36.0 1.19 64.2 30.6 4.4
28.0 1.19 64.2 27.0 3.8
26.3 1.19 67.1 24.0 4.8
17.7 1.19 69.7 20.2 3.4
9.75 1.19 756.5 18.8 3.1
9.15 1.19 63.0 9.4 1.4
12.6 1.19 63.0 9.3 1.7
11.5 1.19 63.0 13.8 2.6
37.75 0.87 21.9 29.7 4.0
21.0 1.37 22.0 17.3 2.8
40.5 1.34 51.0 33.0 3.7
15.0 2.24 64.5 17.0 2.5
18.75 2.24 §9.5 20.0 1.9
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Table A.17

Vave Flume Data on Ripple Geometry under Regular Waves
from Miller and Komar (1980)
d=0.178 mm, s = 2.65

Orbital Radian Vater Ripple Ripple
amplitude frequency temperature length  height
Ay v A 7
(cm) (s-1) (°C) (cw) (e
7.59 2.09 17.0 6.0 1.0
8.37 2.09 17.0 7.6 1.0
16.4 1.57 17.0 13.6 1.0
26.8 1.26 17.0 10.6 1.0
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Table A.18(a)

Wave Flume Data on Ripple Geometry under Regular Waves
from Kennedy and Falcon (1966)
d =0.095 m, s = 2.66

Orbital Radian Vater Ripple Ripple
amplitude frequency temperature length  height
Ap v A 1
(cm) (s-) (‘o (cm) (cm)
2.08 5.87 18.3 3.0 0.51
3.88 3.22 18.3 4.8 0.82
5.39 3.22 18.3 5.6 1.1
65.78 2.69 18.3 5.5 1.0
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Table A.18(b)

Wave Flume Data on Ripple Geometry under Regular Waves
from Kennedy and Falcoln (1965)
d=0.32mm, s =2.66

Orbital Radian Vater Ripple Ripple
amplitude frequency temperature length  height
Ay v A 1
(cm) (s (*C) (cm) (cm)
4.99 4.52 23.9 6.3 1.0
5.33 4.00 23.9 7.2 1.2
6.47 4.00 23.9 8.6 1.6
4.79 4.62 23.9 6.2 1.2
4.26 4.00 23.9 5.9 1.3
3.24 4.52 23.9 4.6 0.7
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Table A.19

Wave Flume Data on Ripple Geometry under Regular Vaves
from Inman and Bowen (1963)
d=0.2mm, 3 =2.65

Orbital Radian Vater Ripple Ripple
amplitude frequency temperature length  height
Ay —_v A 1
(cm) (s) (*C) (cm) (cm)
4.9 4.49 8.0 6.5 1.1
9.6 3.14 16.0 10.8 1.6
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APPENDIX B: NOTATION

bottom orbital amplitude Ap = Upa/¥

representative bottom orbital amplitude of Madsen et al (1988),
defined by equation (20)

bottom orbital amplitude based on the root-mean-square wave height
acceleration parameter defined by equation (16)

grain diameter

non-dimensional parameter D, = du3/g

relative error defined in equation (27)

time-averaged energy dissipation per unit area in the wave boundary
layer

energy dissipation coefficient defined by equation (1)

energy dissipation coefficient based on the root-mean-square wvave
height

friction factor defined in equation (1)

friction factor based on the grain diameter

acceleration due to gravity

vater depth

root-mean-square wave height

significant vave height

vave number

equivalent Nikuradse roughness

equivalent roughness due to form drag

equivalent roughness due fo sediment motion

root-mean-square error

near-bottom flow Reynolds number Re = ApUpe/V

friction Reynolds number

specific gravity of the sand grains

frequency spectrum of near-bottom velocity

frequency spectrum of surface amplitude

non-dimensional parameter S, = dy/(s-1)gd/4v
time

velocity

instantaneous near-bottom velocity
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Ubmras

Ubr

maximum near-bottom velocity

maximum near-bottom velocity based on the root-mean-square vave
height

representative near-bottom velocity of Madsen et al. (1988) defined
by equation (18)

shear velocity

shear velocity based on maximum bottom shear stress
non-dimensional parameter X = 4/S,

height above the bottom

bottom roughness scale

non-dimensional bottom roughness scale

ripple height

non-dimensional parameter f = upa?/(s-1)gd

Von Karman’s constant £ = 0.4

ripple vave-length

kinematic viscosity

density of water

density of sand

shear stress

instantaneous bottom shear stress

maximum bottom shear stress

phase lead of maximum bottom shear stress

Shields parameter § = }fy’upy3/(s-1)gd

critical Shields parameter for the initiation of motion
radian frequency
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